• ISSN 1673-5722
  • CN 11-5429/P

橡胶颗粒改良黏性土的力学特性试验研究

张丽萍 鲁思杰 庄海洋 吴琪

张丽萍,鲁思杰,庄海洋,吴琪,2025. 橡胶颗粒改良黏性土的力学特性试验研究. 震灾防御技术,20(1):197−209. doi:10.11899/zzfy20240087. doi: 10.11899/zzfy20240087
引用本文: 张丽萍,鲁思杰,庄海洋,吴琪,2025. 橡胶颗粒改良黏性土的力学特性试验研究. 震灾防御技术,20(1):197−209. doi:10.11899/zzfy20240087. doi: 10.11899/zzfy20240087
Zhang Liping, Lu Sijie, Zhuang Haiyang, Wu Qi. Mechanics Characteristics of Clay Improved by Rubber Particles[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 197-209. doi: 10.11899/zzfy20240087
Citation: Zhang Liping, Lu Sijie, Zhuang Haiyang, Wu Qi. Mechanics Characteristics of Clay Improved by Rubber Particles[J]. Technology for Earthquake Disaster Prevention, 2025, 20(1): 197-209. doi: 10.11899/zzfy20240087

橡胶颗粒改良黏性土的力学特性试验研究

doi: 10.11899/zzfy20240087
基金项目: 江苏省重点研发计划项目(BE2020711);国家自然科学基金项目(51978333)
详细信息
    作者简介:

    张丽萍,女,生于1997年。硕士研究生。主要从事土力学与岩土地震工程研究。E-mail:z94264547464@163.com

    通讯作者:

    庄海洋,男,生于1978 年。博士,教授。主要从事岩土地震工程方面的研究。E-mail:zhuang7802@163.com

Mechanics Characteristics of Clay Improved by Rubber Particles

  • 摘要: 随着乡村振兴的提出,诸多建(构)筑物建于地质条件较差的软弱地基上,为满足工程抗震需要,对这类地基土进行改良很有必要。为了探究橡胶颗粒的掺入对黏性土抗剪强度的影响规律,本文对橡胶颗粒复合土进行室内固结不排水三轴压缩试验,分析了橡胶含量、橡胶粒径、固结围压等因素对橡胶颗粒复合土力学特性的影响规律。试验结果表明,在黏土中加入橡胶颗粒会在一定程度上增加黏性土的抗剪强度,使其黏聚力稍有增加,但复合土的内摩擦角基本不变;同时加入橡胶颗粒会使复合土的初始弹性模量E0显著降低,E0受橡胶含量Rc和固结围压σ3的影响较大,受橡胶颗粒平均粒径Rd50影响较小。本文得出了不同RcRd50下橡胶颗粒复合土E0在Janbu拟合公式中参数K1n1的经验公式及建议值,以及抗剪强度(σ1σ3)在不同RcRd50下的经验公式。
  • 图  1  GDS动、静三轴仪( DYNTTS型 )

    Figure  1.  GDS dynamic and static triaxial instrument (DYNTTS-type)

    图  2  典型试验曲线

    Figure  2.  Typical test curves

    图  3  不同Rc的应力-应变曲线

    Figure  3.  Stress-strain curves of different Rc

    图  4  不同Rd50的应力-应变曲线

    Figure  4.  Stress-strain curves of different Rd50

    图  5  不同固结围压下的应力-应变曲线

    Figure  5.  Stress-strain curves under different σ3

    图  6  不同橡胶含量的初始弹性模量

    Figure  6.  Initial shearing modulus of different Rc

    图  7  橡胶颗粒复合土的 E0σ3/P关系

    Figure  7.  The E0σ3/P curves of rubber particle composite soil

    图  8  拟合参数n1

    Figure  8.  Fitting parameter n1

    图  9  拟合参数K1

    Figure  9.  Fitting parameter K1

    图  10  拟合参数K1的系数、指数与Rd50的关系

    Figure  10.  The relationship between the related parameters of the fitting parameter K1 and Rd50

    图  11  初始弹性模量预测值与实际值的关系曲线

    Figure  11.  Relationship between experimental value and predicted value of the initial shearing modulus

    图  12  橡胶颗粒复合土的(σ1σ3)~σ3/P关系

    Figure  12.  The (σ1σ3) ~σ3/P curves of rubber particle composite soil

    图  13  橡胶颗粒复合土的Rc、Rd50与(σ1σ3)的关系曲线

    Figure  13.  The relationship between Rc, Rd50 and (σ1σ3) of rubber particle composite soil

    图  14  橡胶颗粒复合土的(σ1σ3)的拟合参数n2

    Figure  14.  Fitting parameter n2 of (σ1σ3) of rubber particle composite soil

    图  15  归一化抗剪强度与橡胶含量的关系

    Figure  15.  Relationship between normalized shear strength and Rc

    图  16  抗剪强度(σ1σ3)的预测值与实际值关系曲线

    Figure  16.  The relationship curve between the predicted value and the actual value of shear strength

    图  17  不同Rc、Rd50橡胶黏土复合土的莫尔应力圆

    Figure  17.  The Mohr stress circle of rubber particle composite soil with different Rc and Rd50

    图  18  橡胶颗粒复合土的φRcRd50关系

    Figure  18.  The relationship between the φ of rubber particle composite soil and Rc or Rd50

    图  19  橡胶颗粒复合土的黏聚力cRcRd50关系

    Figure  19.  The relationship between the cohesive force angle of rubber particle composite soil and Rc or Rd50

    表  1  不同配比复合土的压实特性

    Table  1.   Compaction characteristics of composite soil

    橡胶含量 Rc/% 橡胶颗粒平均粒径Rd50/mm 最优含水率/% 最大干密度/(g·cm−3)
    016.001.839
    30.12515.721.781
    618.851.715
    1019.921.672
    2019.391.520
    3020.441.366
    30.37516.301.776
    618.761.710
    1019.901.674
    2019.501.519
    3020.201.374
    30.7516.801.768
    618.901.703
    1019.501.677
    2019.551.517
    3019.501.386
    31.517.181.753
    618.991.689
    1018.441.683
    2019.601.514
    3018.791.410
    下载: 导出CSV

    表  2  橡胶颗粒复合土的试验工况

    Table  2.   Test conditions of rubber particle composite soil

    橡胶含量Rc/%橡胶颗粒平均粒径Rd50/mm压实度/%固结围压σ3/kPa
    09050, 100, 200
    30.125,0.375,0.75,1.59050, 100, 200
    60.125,0.375,0.75,1.59050, 100, 200
    100.125,0.375,0.75,1.59050, 100, 200
    200.125,0.375,0.75,1.59050, 100, 200
    300.125,0.375,0.75,1.59050, 100, 200
    下载: 导出CSV

    表  3  不同围压下抗剪强度最大的最优橡胶颗粒含量Rc

    Table  3.   The optimal Rc that maximizes the shear strength under different confining pressures

    橡胶粒径Rd50/mm Rc/%
    σ3=50 kPa σ3=100 kPa σ3=200 kPa
    0.125 10 20 10
    0.375 10 10 20
    0.75 20 20 20
    1.5 30 20 30
    下载: 导出CSV

    表  4  不同工况下橡胶颗粒复合土的抗剪强度指标

    Table  4.   Shear strength index of rubber particle composite soil under different working conditions

    橡胶含量Rc/% 橡胶颗粒粒径Rd50/mm 总黏聚力 c/kPa 总内摩擦角φ/(g·cm−3) 有效黏聚力c'/kPa 有效内摩擦角φ/(g·cm−3)
    08.6413.964.5632.14
    30.1256.713.54.8231.21
    68.1713.476.829.88
    1013.8712.274.7431.45
    2019.9111.135.1530.02
    3011.912.446.2429.49
    30.3757.8913.124.9831.57
    69.5312.865.3230.94
    109.9512.787.5530.24
    2012.6912.626.6229.76
    3010.2213.027.2128.88
    30.758.4212.366.7831.05
    69.8612.157.0530.45
    1010.7911.788.6329.76
    2012.7811.067.0829.02
    3012.4611.958.9628.07
    31.59.0612.017.1230.08
    612.5311.77.0430.07
    1010.5511.099.8827.91
    2011.5811.364.1632.6
    3013.7212.210.9229.72
    下载: 导出CSV
  • 李朝晖,2011. 废轮胎颗粒与黄土混合物岩土工程特性研究. 兰州:兰州大学.

    Li Z. H., 2011. Geotechnical properties of granulated rubber and loess soil mixtures. Lanzhou:Lanzhou University. (in Chinese)
    庞邦辉,2020. 废旧轮胎橡胶颗粒改良桂林红黏土工程特性研究. 桂林:桂林理工大学.

    Pang B. H., 2020. Study on engineering characteristics of Guilin red clay improved by waste tire rubber particles. Guilin:Guilin University of Technology. (in Chinese)
    孙树林,魏永耀,张鑫,2009. 废弃轮胎胶粉改良膨胀土的抗剪强度研究. 岩石力学与工程学报,28(S1):3070−3075.

    Sun S. L., Wei Y. Y., Zhang X., 2009. Research on shear strength of expansive soils reinforced with waste tire powders. Chinese Journal of Rock Mechanics and Engineering, 28(S1): 3070−3075. (in Chinese)
    殷宗泽,2004. 土工原理. 北京:清华大学出版社.

    Yin Z. Z., 2004. Tugongyuanli. Beijing:Tsinghua University Press. (in Chinese)
    宗佳敏,宋迎俊,鲁洋等,2017. 冻融循环下废旧轮胎颗粒改性膨胀土无侧限抗压强度试验. 长江科学院院报,34(9):110−114. doi: 10.11988/ckyyb.20160511

    Zong J. M., Song Y. J., Lu Y., et al., 2017. Unconfined compressive strength test on expansive soil improved by waste tire rubber particles under freeze-thaw cycles. Journal of Yangtze River Scientific Research Institute, 34(9): 110−114. (in Chinese) doi: 10.11988/ckyyb.20160511
    Akbarimehr D., Eslami A., Aflaki E., 2020. Geotechnical behaviour of clay soil mixed with rubber waste. Journal of Cleaner Production, 271: 122632. doi: 10.1016/j.jclepro.2020.122632
    Lu Y., Zhang Y. G., Liu S. H., et al., 2022. Mechanical behaviour and permeability of expansive soils mixed with scrap tire rubbers subjected to freeze-thaw cycles. Cold Regions Science and Technology, 199: 103580. doi: 10.1016/j.coldregions.2022.103580
    Marefat V., Soltani-Jigheh H., 2011. Laboratory behavior of clay-tire mixtures. World Applied Sciences Journal, 13(5): 1035−1041.
    Ramirez G. G. D., Casagrande M. D. T., Folle D., et al., 2015. Behavior of granular rubber waste tire reinforced soil for application in geosynthetic reinforced soil wall. Revista IBRACON de Estruturas e Materiais, 8(4): 567−576. doi: 10.1590/S1983-41952015000400009
    Sellaf H. , Trouzine H. , Hamhami M. , et al. , 2014. Geotechnical properties of rubber tires and sediments mixtures. Engineering, Technology & Applied Science Research, 4 (2): 618−624.
    Shibuya S., Tatsuoka F., Teachavorasinskun S., et al., 1992. Elastic deformation properties of geomaterials. Soils and Foundations, 32(3): 26−46. doi: 10.3208/sandf1972.32.3_26
    Soltani A., Deng A., Taheri A., et al., 2019. Swell–shrink behavior of rubberized expansive clays during alternate wetting and drying. Minerals, 9(4): 224. doi: 10.3390/min9040224
    Srivastava A., Pandey S., Rana J., 2014. Use of shredded tyre waste in improving the geotechnical properties of expansive black cotton soil. Geomechanics and Geoengineering, 9(4): 303−311. doi: 10.1080/17486025.2014.902121
    Valipour M., Shourijeh P. T., Mohammadinia A., 2021. Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27: 100474. doi: 10.1016/j.trgeo.2020.100474
    Xia P. X., Shao L. T., Deng W., 2021. Mechanism study of the evolution of quasi-elasticity of granular soil during cyclic loading. Granular Matter, 23(4): 84. doi: 10.1007/s10035-021-01157-8
    Xin L., He J., Liu H. L., et al., 2015. Potential of using cemented soil-tire chips mixture as construction fill: a laboratory study. Journal of Coastal Research, 73(S1): 564−571.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 录用日期:  2024-06-27
  • 修回日期:  2024-06-11
  • 网络出版日期:  2025-04-18
  • 刊出日期:  2025-03-30

目录

    /

    返回文章
    返回