• ISSN 1673-5722
  • CN 11-5429/P

跨海桥梁地震-冲刷联合作用危险性分析

杨怀茂 马祥伟 陈上有

杨怀茂,马祥伟,陈上有,2025. 跨海桥梁地震-冲刷联合作用危险性分析. 震灾防御技术,x(x):1−9. doi:10.11899/zzfy202400508. doi: 10.11899/zzfy202400508
引用本文: 杨怀茂,马祥伟,陈上有,2025. 跨海桥梁地震-冲刷联合作用危险性分析. 震灾防御技术,x(x):1−9. doi:10.11899/zzfy202400508. doi: 10.11899/zzfy202400508
Yang Huaimao, Ma Xiangwei, Chen Shangyou. Risk Analysis of a Cross-sea Bridge Under the Combined Action of Seismic and Erosion[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy202400508
Citation: Yang Huaimao, Ma Xiangwei, Chen Shangyou. Risk Analysis of a Cross-sea Bridge Under the Combined Action of Seismic and Erosion[J]. Technology for Earthquake Disaster Prevention. doi: 10.11899/zzfy202400508

跨海桥梁地震-冲刷联合作用危险性分析

doi: 10.11899/zzfy202400508
基金项目: 交通运输行业重点科技项目(2020-MS1-004)
详细信息
    作者简介:

    杨怀茂,男,生于1989年。高级工程师。主要从事桥梁结构安全工作。E-mail:yanghuaimao89@163.com

Risk Analysis of a Cross-sea Bridge Under the Combined Action of Seismic and Erosion

  • 摘要: 本文以某跨海三塔斜拉桥为研究对象,开展了地震-冲刷联合作用下三塔斜拉桥危险性分析,给出了合理冲刷深度计算方法。首先,提出了地震-冲刷联合作用下桥梁危险性分析流程。其次,建立了符合P-Ⅲ分布的地震危险性模型,利用蒙特卡罗模拟的数值结果拟合了冲刷危险性模型。同时,以该背景桥梁为原型建立了三塔斜拉桥的非线性动力分析模型,进行了一系列非线性时程分析,在地震和冲刷危险分析模型的基础上,建立了三塔斜拉桥在确定和可变冲刷深度下的破坏概率模型。最后,通过地震-冲刷联合作用下的破坏概率模型计算出合理的冲刷深度。本文提出的危险性分析框架和分析结果可为地震-冲刷灾害下类似桥梁的设计提供理论依据。
  • 图  1  多灾害作用下风险分析框架

    Figure  1.  Risk analysis framework under the influence of multiple disasters

    图  2  地震危险性模型曲线

    Figure  2.  Seismic hazard model curve

    图  3  冲刷曲线

    Figure  3.  Erosion curve

    图  4  某三塔斜拉桥总体布置图(单位:米)

    Figure  4.  Overall layout of a three tower cable-stayed bridge(Unit:m)

    图  5  三塔斜拉桥数值模型

    Figure  5.  Numerical model of three tower cable-stayed bridge

    图  6  桩土相互作用示意

    Figure  6.  Schematic diagram of pile-soil interaction

    图  7  三塔斜拉桥主塔地震易损性分析结果

    Figure  7.  Seismic fragility analysis results of the main tower of the three tower cable-stayed bridge

    图  8  不同冲刷深度下三塔斜拉桥易损性结果

    Figure  8.  Seismic fragility analysis results of the three tower cable-stayed bridge under different scour depths

    图  9  地震-冲刷联合的易损性曲面

    Figure  9.  Fragility surface of erosion earthquake combined action

    图  10  冲刷深度-失效概率曲线

    Figure  10.  Scour depth-failure probability curve

    图  11  地震动时程曲线

    Figure  11.  Time history curves of the ground motion

    图  12  桥塔及桩基最不利弯矩比较

    Figure  12.  Comparison of the most unfavorable bending moment of bridge towers and pile foundation

    图  13  桥梁结构损伤失效概率比较

    Figure  13.  Comparison of probability of damage and failure of bridge structures

    表  1  冲刷深度参数概率分布

    Table  1.   Probability distribution of scour depth parameters

    变量均值变异系数分布类型
    λs0.570.6正态分布
    K21.00.05正态分布
    K31.10.05正态分布
    下载: 导出CSV
  • 冯清海, 2008. 特大桥梁地震易损性与风险概率分析. 上海: 同济大学.
    梁轩, 2022. 考虑动水作用和冲刷效应的深水桥梁桩基地震动力响应研究. 上海: 同济大学.

    Liang X., 2022. Seismic analysis of deep water bridge pile foundation considering hydrodynamic pressure and scour effect. Shanghai: Tongji University. (in Chinese)
    刘兵, 梁发云, 彭君, 2016. 地震与洪水作用下桥墩基础易损性曲线与回归分析. 结构工程师, 32(6): 155−161.

    Liu B., Liang F. Y., Peng J., 2016. Fragility analysis and parameters regression of bridge foundation under the combined action of earthquake and flood. Structural Engineers, 32(6): 155−161. (in Chinese)
    杨延凯, 马如进, 陈艾荣, 2016. 基于风险的桥梁多灾害下合理冲刷深度研究. 华南理工大学学报(自然科学版), 44(3): 103−109, 127.

    Yang Y. K., Ma R. J., Chen A. R., 2016. Risk-based probe into appropriate scour depth of bridge under multiple hazards. Journal of South China University of Technology (Natural Science Edition), 44(3): 103−109,127. (in Chinese)
    张云霞, 2017. 冲刷环境下连续梁桥的地震易损性分析. 徐州: 中国矿业大学.

    Zhang Y. X., 2017. Seismic fragility analysis of continuous girder bridges under scour conditions. Xuzhou: China University of Mining and Technology. (in Chinese)
    周敉, 赵威, 石雄伟等, 2020. 高烈度软土场地桥梁地震与冲刷联合作用效应研究. 振动与冲击, 39(8): 88−98.

    Zhou M., Zhao W., Shi X. W., et al., 2020. A study on combined effect of earthquake and scour of bridge in high earthquake-intensity and soft soil site. Journal of Vibration and Shock, 39(8): 88−98. (in Chinese)
    Alipour A., Shafei B., Shinozuka M., 2013. Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: scour and earthquake. Journal of Bridge Engineering, 18(5): 362−371. doi: 10.1061/(ASCE)BE.1943-5592.0000369
    API, 2000. Recommended practice for planning, designing and constructing fixed offshore platforms−Working stress design. Washington: API.
    Baker J. W., Jayaram N., 2008. Correlation of spectral acceleration values from NGA ground motion models. Earthquake Spectra, 24(1): 299−317. doi: 10.1193/1.2857544
    Banerjee S., Prasad G. G., 2013. Seismic risk assessment of reinforced concrete bridges in flood-prone regions. Structure and Infrastructure Engineering, 9(9): 952−968. doi: 10.1080/15732479.2011.649292
    Brown D. A., Reese L. C., O’Neill M. W., 1987. Cyclic lateral loading of a large-scale pile group. Journal of Geotechnical Engineering, 113(11): 1326−1343. doi: 10.1061/(ASCE)0733-9410(1987)113:11(1326)
    Cai Y. H. , Yang H. M. , Zeng J. L. , 2022. Seismic response analysis for three-pylon cable-stayed bridge under foundation scour. In: Proceedings of the 32nd International Ocean and Polar Engineering Conference. Shanghai: ISOPE.
    Chen Z. Q. , Guo X. , 2015. Multi-hazard life-cycle analysis of flood-scour effects on seismic bridge performance. In: Proceedings of the Structures Congress. Portland: ASCE, 1370−1379.
    Dong Y., Frangopol D. M., Saydam D., 2013. Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10): 1451−1467.
    Ghosn M. , Moses F. , 2003. Design of highway bridges for extreme events. Washington: Transportation Research Board.
    Han Q., Wen J. N., Du X. L., et al., 2018a. Nonlinear seismic response of a base isolated single pylon cable-stayed bridge. Engineering Structures, 175: 806−821. doi: 10.1016/j.engstruct.2018.08.077
    Han Q., Wen J. N., Du X. L., et al., 2018b. Simplified seismic resistant design of base isolated single pylon cable-stayed bridge. Bulletin of Earthquake Engineering, 16(10): 5041−5059. doi: 10.1007/s10518-018-0382-0
    Han Q., Wen J. N., Du X. L., et al., 2019. Seismic response of single pylon cable-stayed bridge under scour effect. Journal of Bridge Engineering, 24(6): 5019007. doi: 10.1061/(ASCE)BE.1943-5592.0001413
    Johnson P. A., Dock D. A., 1998. Probabilistic bridge scour estimates. Journal of Hydraulic Engineering, 124(7): 750−754. doi: 10.1061/(ASCE)0733-9429(1998)124:7(750)
    Stephens M. A., 1970. Use of the Kolmogorov–Smirnov, Cramér–Von Mises and related statistics without extensive tables. Journal of the Royal Statistical Society: Series B (Methodological), 32(1): 115−122. doi: 10.1111/j.2517-6161.1970.tb00821.x
    Wang Z. H., Padgett J. E., Dueñas-Osorio L., 2014. Risk-consistent calibration of load factors for the design of reinforced concrete bridges under the combined effects of earthquake and scour hazards. Engineering Structures, 79: 86−95. doi: 10.1016/j.engstruct.2014.07.005
    Yilmaz T., Banerjee S., Johnson P. A., 2016. Performance of two real-life California bridges under regional natural hazards. Journal of Bridge Engineering, 21(3): 4015063. doi: 10.1061/(ASCE)BE.1943-5592.0000827
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-10
  • 录用日期:  2024-12-12
  • 修回日期:  2024-11-29
  • 网络出版日期:  2025-09-25

目录

    /

    返回文章
    返回