Risk Analysis of a Cross-sea Bridge Under the Combined Action of Seismic and Erosion
-
摘要: 本文以某跨海三塔斜拉桥为研究对象,开展了地震-冲刷联合作用下三塔斜拉桥危险性分析,给出了合理冲刷深度计算方法。首先,提出了地震-冲刷联合作用下桥梁危险性分析流程。其次,建立了符合P-Ⅲ分布的地震危险性模型,利用蒙特卡罗模拟的数值结果拟合了冲刷危险性模型。同时,以该背景桥梁为原型建立了三塔斜拉桥的非线性动力分析模型,进行了一系列非线性时程分析,在地震和冲刷危险分析模型的基础上,建立了三塔斜拉桥在确定和可变冲刷深度下的破坏概率模型。最后,通过地震-冲刷联合作用下的破坏概率模型计算出合理的冲刷深度。本文提出的危险性分析框架和分析结果可为地震-冲刷灾害下类似桥梁的设计提供理论依据。Abstract: Taking a cross-sea three-tower cable-stayed bridge as the background bridge, the risk analysis of the three-tower cable-stayed bridge under the combined action of seismic and erosion was carried out, and the reasonable calculation method of erosion depth was given. Firstly, the risk analysis process of bridge under the combined action of seismic and erosion was proposed. Secondly, the seismic risk model conforming to P-Ⅲ distribution was established, and the erosion risk model was fitted with the numerical results of Monte Carlo simulation. Then, the nonlinear dynamic analysis model of the three-tower cable-stayed bridge was established, and a series of nonlinear time-history analysis was carried out. On the basis of the seismic and erosion risk analysis model, the failure probability model of the three-tower cable-stayed bridge under fixed and variable erosion depth was established. Finally, reasonable erosion depth was calculated by the failure probability model under the combined action of seismic and erosion. The risk analysis framework and analysis results can provide theoretical basis for the design of similar bridges under seismic-scour disasters.
-
Key words:
- Three-tower cable-stayed bridge /
- Seismic /
- Scour /
- Risk analysis /
- The failure probability model
-
表 1 冲刷深度参数概率分布
Table 1. Probability distribution of scour depth parameters
变量 均值 变异系数 分布类型 λs 0.57 0.6 正态分布 K2 1.0 0.05 正态分布 K3 1.1 0.05 正态分布 -
冯清海, 2008. 特大桥梁地震易损性与风险概率分析. 上海: 同济大学. 梁轩, 2022. 考虑动水作用和冲刷效应的深水桥梁桩基地震动力响应研究. 上海: 同济大学.Liang X., 2022. Seismic analysis of deep water bridge pile foundation considering hydrodynamic pressure and scour effect. Shanghai: Tongji University. (in Chinese) 刘兵, 梁发云, 彭君, 2016. 地震与洪水作用下桥墩基础易损性曲线与回归分析. 结构工程师, 32(6): 155−161.Liu B., Liang F. Y., Peng J., 2016. Fragility analysis and parameters regression of bridge foundation under the combined action of earthquake and flood. Structural Engineers, 32(6): 155−161. (in Chinese) 杨延凯, 马如进, 陈艾荣, 2016. 基于风险的桥梁多灾害下合理冲刷深度研究. 华南理工大学学报(自然科学版), 44(3): 103−109, 127.Yang Y. K., Ma R. J., Chen A. R., 2016. Risk-based probe into appropriate scour depth of bridge under multiple hazards. Journal of South China University of Technology (Natural Science Edition), 44(3): 103−109,127. (in Chinese) 张云霞, 2017. 冲刷环境下连续梁桥的地震易损性分析. 徐州: 中国矿业大学.Zhang Y. X., 2017. Seismic fragility analysis of continuous girder bridges under scour conditions. Xuzhou: China University of Mining and Technology. (in Chinese) 周敉, 赵威, 石雄伟等, 2020. 高烈度软土场地桥梁地震与冲刷联合作用效应研究. 振动与冲击, 39(8): 88−98.Zhou M., Zhao W., Shi X. W., et al., 2020. A study on combined effect of earthquake and scour of bridge in high earthquake-intensity and soft soil site. Journal of Vibration and Shock, 39(8): 88−98. (in Chinese) Alipour A., Shafei B., Shinozuka M., 2013. Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: scour and earthquake. Journal of Bridge Engineering, 18(5): 362−371. doi: 10.1061/(ASCE)BE.1943-5592.0000369 API, 2000. Recommended practice for planning, designing and constructing fixed offshore platforms−Working stress design. Washington: API. Baker J. W., Jayaram N., 2008. Correlation of spectral acceleration values from NGA ground motion models. Earthquake Spectra, 24(1): 299−317. doi: 10.1193/1.2857544 Banerjee S., Prasad G. G., 2013. Seismic risk assessment of reinforced concrete bridges in flood-prone regions. Structure and Infrastructure Engineering, 9(9): 952−968. doi: 10.1080/15732479.2011.649292 Brown D. A., Reese L. C., O’Neill M. W., 1987. Cyclic lateral loading of a large-scale pile group. Journal of Geotechnical Engineering, 113(11): 1326−1343. doi: 10.1061/(ASCE)0733-9410(1987)113:11(1326) Cai Y. H. , Yang H. M. , Zeng J. L. , 2022. Seismic response analysis for three-pylon cable-stayed bridge under foundation scour. In: Proceedings of the 32nd International Ocean and Polar Engineering Conference. Shanghai: ISOPE. Chen Z. Q. , Guo X. , 2015. Multi-hazard life-cycle analysis of flood-scour effects on seismic bridge performance. In: Proceedings of the Structures Congress. Portland: ASCE, 1370−1379. Dong Y., Frangopol D. M., Saydam D., 2013. Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10): 1451−1467. Ghosn M. , Moses F. , 2003. Design of highway bridges for extreme events. Washington: Transportation Research Board. Han Q., Wen J. N., Du X. L., et al., 2018a. Nonlinear seismic response of a base isolated single pylon cable-stayed bridge. Engineering Structures, 175: 806−821. doi: 10.1016/j.engstruct.2018.08.077 Han Q., Wen J. N., Du X. L., et al., 2018b. Simplified seismic resistant design of base isolated single pylon cable-stayed bridge. Bulletin of Earthquake Engineering, 16(10): 5041−5059. doi: 10.1007/s10518-018-0382-0 Han Q., Wen J. N., Du X. L., et al., 2019. Seismic response of single pylon cable-stayed bridge under scour effect. Journal of Bridge Engineering, 24(6): 5019007. doi: 10.1061/(ASCE)BE.1943-5592.0001413 Johnson P. A., Dock D. A., 1998. Probabilistic bridge scour estimates. Journal of Hydraulic Engineering, 124(7): 750−754. doi: 10.1061/(ASCE)0733-9429(1998)124:7(750) Stephens M. A., 1970. Use of the Kolmogorov–Smirnov, Cramér–Von Mises and related statistics without extensive tables. Journal of the Royal Statistical Society: Series B (Methodological), 32(1): 115−122. doi: 10.1111/j.2517-6161.1970.tb00821.x Wang Z. H., Padgett J. E., Dueñas-Osorio L., 2014. Risk-consistent calibration of load factors for the design of reinforced concrete bridges under the combined effects of earthquake and scour hazards. Engineering Structures, 79: 86−95. doi: 10.1016/j.engstruct.2014.07.005 Yilmaz T., Banerjee S., Johnson P. A., 2016. Performance of two real-life California bridges under regional natural hazards. Journal of Bridge Engineering, 21(3): 4015063. doi: 10.1061/(ASCE)BE.1943-5592.0000827 -