• ISSN 1673-5722
  • CN 11-5429/P

泸定地震地震动模拟与地形场地效应研究

王辅臣 马强 陶冬旺 解全才

王辅臣,马强,陶冬旺,解全才,2025. 泸定地震地震动模拟与地形场地效应研究. 震灾防御技术,20(2):289−301. doi:10.11899/zzfy20230502. doi: 10.11899/zzfy20230502
引用本文: 王辅臣,马强,陶冬旺,解全才,2025. 泸定地震地震动模拟与地形场地效应研究. 震灾防御技术,20(2):289−301. doi:10.11899/zzfy20230502. doi: 10.11899/zzfy20230502
Wang Fuchen, Ma Qiang, Tao Dongwang, Xie Quancai. Ground Motion Simulation and Topographic Site Effect of Luding Earthquake[J]. Technology for Earthquake Disaster Prevention, 2025, 20(2): 289-301. doi: 10.11899/zzfy20230502
Citation: Wang Fuchen, Ma Qiang, Tao Dongwang, Xie Quancai. Ground Motion Simulation and Topographic Site Effect of Luding Earthquake[J]. Technology for Earthquake Disaster Prevention, 2025, 20(2): 289-301. doi: 10.11899/zzfy20230502

泸定地震地震动模拟与地形场地效应研究

doi: 10.11899/zzfy20230502
基金项目: 中国地震局工程力学研究所基本科研业务费专项项目(2021B08、2016A03);黑龙江省自然科学基金项目(LH2022E119);国家自然科学基金项目(U2039209)
详细信息
    作者简介:

    王辅臣,男,生于1994年。博士研究生。主要从事强震动观测与地形场地效应研究。E-mail:iemwfc@163.com

    通讯作者:

    马强,男,生于1979年。博士,研究员。主要从事地震预警与强震动观测研究。E-mail:maqiang@iem.ac.cn

Ground Motion Simulation and Topographic Site Effect of Luding Earthquake

  • 摘要: 2022年9月5日四川省甘孜州泸定县境内发生MW 6.6地震,地震造成93人死亡、25人失联,423人受伤,给人民群众生命财产安全造成重大损失。本次地震震中位于青藏高原东部边缘,高山峡谷地貌形态突出,由此引发的地震动地形效应不容忽视。本文基于谱元方法模拟了泸定地震近断层地震动,并分析了地形场地效应的影响。在有效模拟频带范围内,得到如下结论:(1)相较于平面自由场,山谷地震动持时会增加约2倍左右,且在破裂方向上会更加明显;(2)山谷台站的三分量合成加速度峰值(PGA)放大系数普遍大于三分量合成速度峰值(PGV)放大系数,最大不超过2;(3)山谷地形使得地震动的累计绝对速度(CAV)增大2~4倍。地形能够引起地震动持时的放大,在重大工程紧急处置参数确定中应当考虑地形场地效应的影响。
  • 图  1  泸定地震震中与台站位置分布

    Figure  1.  The epicenter and stations location distribution of the Luding earthquake

    图  2  三维地下结构

    Figure  2.  Three dimensional undersurface structure

    图  3  三维谱元网格

    Figure  3.  3D spectral element mesh

    图  4  泸定地震运动学断层模型

    Figure  4.  Kinematics fault model of Luding earthquake

    图  5  震源时间函数

    Figure  5.  Luding earthquake source time function

    图  6  断层面在地表的投影及PGA、PGV和PGD的空间分布

    Figure  6.  Projection of fault plane on the surface and the spatial distribution of PGA, PGV and PGD

    图  7  观测记录的信噪比

    Figure  7.  Signal-to-noise ratio of observed data

    图  8  数据处理流程示意图

    Figure  8.  Strong motion data processing flow chart

    图  9  12个台站的观测记录与模拟记录对比

    Figure  9.  The comparisonof observation records and simulation records for 12 stations

    图  10  模拟记录与观测记录的偏差

    Figure  10.  The bias between the simulated data and the observed data

    图  11  地形台站与平面台站PGA、PGV、TdIA2IV2CAV及其对应比值

    Figure  11.  PGA, PGV, Td, IA2,IV2,CAV and their ratios for topographic stations and flat free-field stations

    图  12  V2201台站地形场地记录与平面场地记录对比

    Figure  12.  Comparison between topographic site records and flat site records of station V2201

    图  13  滤波前后各参数值比值

    Figure  13.  The ratio of parameter values before and after filtering

    表  1  泸定地震震源参数

    Table  1.   Source parameters of the Luding earthquake

    震源位置 震源机制 长度/km 宽度/km 矩震级MW
    经度/(°E) 纬度/(°N) 深度/km 走向/(°) 倾角/(°) 滑动角/(°)
    102.109 29.524 5.76 167.37 72 30 16 6.59
    注:相关震源参数参考韩炳权等(2023)。
    下载: 导出CSV

    表  2  台站信息

    Table  2.   Information of stations

    台站名 经度/(°E) 纬度/(°N) 震中距/km 震中方位角/(°) 备注
    V2411 102.09 29.61 2.0 202.4 预警烈度台
    V2204 102.13 29.64 6.9 220.5 预警烈度台
    V2201 102.19 29.58 10.4 275.5 预警烈度台
    V2271 102.18 29.53 11.6 306.9 预警烈度台
    T2471 102.23 29.37 28.3 329.1 预警烈度台
    V2203 102.20 29.83 28.5 204.2 预警烈度台
    XXXJ 102.08 29.73 16.0 178.6 预警强震台
    SMCK 102.14 29.42 19.9 343.6 预警强震台
    CNXJ 102.21 29.76 22.3 212.5 预警强震台
    VL002 102.25 29.76 24.3 221.2 预警强震台
    51 LDJ 102.21 29.69 16.2 228.4 传统强震台
    51 LDL 102.23 29.79 26.1 213.6 传统强震台
    下载: 导出CSV
  • 巴振宁,赵靖轩,张郁山等,2023. 基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟. 地球物理学报,66(3):1125−1138. doi: 10.6038/cjg2022Q0181

    Ba Z. N., Zhao J. X., Zhang Y. S., et al., 2023. Broadband Ground Motion Spectral Element Simulation based on GP14.3 Kinematic Hybrid Source Model and SPECFEM 3D. Chinese Journal of Geophysics, 66(3): 1125−1138. (in Chinese) doi: 10.6038/cjg2022Q0181
    高玉峰,2019. 河谷场地地震波传播解析模型及放大效应. 岩土工程学报,41(1):1−25. doi: 10.11779/CJGE201901001

    Gao Y. F., 2019. Analytical models and amplification effects of seismic wave propagation in canyon sites. Chinese Journal of Geotechnical Engineering, 41(1): 1−25. (in Chinese) doi: 10.11779/CJGE201901001
    韩炳权,刘振江,陈博等,2023. 2022年泸定Mw 6.6地震InSAR同震形变与滑动分布. 武汉大学学报•信息科学版,48(1):36−46.

    Han B. Q., Liu Z. J., Chen B., et al., 2023. Coseismic deformation and slip distribution of the 2022 Luding Mw 6.6 earthquake revealed by InSAR observations. Geomatics and Information Science of Wuhan University, 48(1): 36−46. (in Chinese)
    李平,刘红帅,薄景山等,2016. 汶川Ms8.0地震河谷地形对汉源县城高烈度异常的影响. 地球物理学报,59(1):174−184. doi: 10.6038/cjg20160115

    Li P., Liu H. S., Bo J. S., et al., 2016. Effects of river valley topography on anomalously high intensity in the Hanyuan town during the Wenchuan Ms 8.0 earthquake. Chinese Journal of Geophysics, 59(1): 174−184. (in Chinese) doi: 10.6038/cjg20160115
    马强,金星,李山有等,2013. 用于地震预警的P波震相到时自动拾取. 地球物理学报,56(7):2313−2321. doi: 10.6038/cjg20130718

    Ma Q., Jin X., Li S. Y., et al., 2013. Automatic P-arrival detection for earthquake early waning. Chinese Journal of Geophysics, 56(7): 2313−2321. (in Chinese) doi: 10.6038/cjg20130718
    周国良,李小军,侯春林等,2012. SV波入射下河谷地形地震动分布特征分析. 岩土力学,33(4):1161−1166. doi: 10.3969/j.issn.1000-7598.2012.04.029

    Zhou G. L., Li X. J., Hou C. L., et al., 2012. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves. Rock and Soil Mechanics, 33(4): 1161−1166. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.04.029
    Allen T. I., Wald D. J., 2009. On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bulletin of the Seismological Society of America, 99(2A): 935−943. doi: 10.1785/0120080255
    Assimaki D., Gazetas G., Kausel E., 2005. Effects of local soil conditions on the topographic aggravation of seismic motion: parametric investigation and recorded field evidence from the 1999 Athens earthquake. Bulletin of the Seismological Society of America, 95(3): 1059−1089. doi: 10.1785/0120040055
    Brocher T. M., 2005. Empirical relations between elastic wavespeeds and density in the earth's crust. Bulletin of the Seismological Society of America, 95(6): 2081−2092. doi: 10.1785/0120050077
    Dorn R. I., 2014. Chronology of rock falls and slides in a desert mountain range: case study from the Sonoran desert in South-central Arizona. Geomorphology, 223: 81−89. doi: 10.1016/j.geomorph.2014.07.005
    Gao Y. F., Zhang N., Li D. Y., et al., 2012. Effects of topographic amplification induced by a U-shaped canyon on seismic waves. Bulletin of the Seismological Society of America, 102(4): 1748−1763. doi: 10.1785/0120110306
    Geli L., Bard P. Y., Jullien B., 1988. The effect of topography on earthquake ground motion: a review and new results. Bulletin of the Seismological Society of America, 78(1): 42−63. doi: 10.1785/BSSA0780010042
    Graves R. W., Pitarka A., 2010. Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5A): 2095−2123. doi: 10.1785/0120100057
    Heath D. C., Wald D. J., Worden C. B., et al., 2020. A global hybrid VS30 map with a topographic slope–based default and regional map insets. Earthquake Spectra, 36(3): 1570−1584. doi: 10.1177/8755293020911137
    Huang D. R., Sun P. G., Jin F., et al., 2021. Topographic amplification of ground motions incorporating uncertainty in subsurface soils with extensive geological borehole data. Soil Dynamics and Earthquake Engineering, 141: 106441. doi: 10.1016/j.soildyn.2020.106441
    Igel H. , 2017. Computational seismology: a practical introduction. Oxford: Oxford University Press, 199−209.
    Komatitsch D., Vilotte J. P., 1998. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2): 368−392. doi: 10.1785/BSSA0880020368
    Komatitsch D., Tromp J., 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139(3): 806−822. doi: 10.1046/j.1365-246x.1999.00967.x
    Komatitsch D., Liu Q. Y., Tromp J., et al., 2004. Simulations of ground motion in the Los Angeles Basin based upon the spectral-element method. Bulletin of the Seismological Society of America, 94(1): 187−206. doi: 10.1785/0120030077
    Komatitsch D. , Tsuboi S. , Tromp J. , et al. , 2005. The spectral-element method in seismology. In: Levander A. , Nolet G. , eds. , Seismic Earth: Array Analysis of Broadband Seismograms, Volume 157. Washington: American Geophysical Union, 205.
    Kuhlemeyer R. L., Lysmer J., 1973. Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division, 99(5): 421−427. doi: 10.1061/JSFEAQ.0001885
    Lee S. J., Chen H. W., Liu Q. Y., et al., 2008. Three-dimensional simulations of seismic-wave propagation in the Taipei basin with realistic topography based upon the spectral-element method. Bulletin of the Seismological Society of America, 98(1): 253−264. doi: 10.1785/0120070033
    Lee S. J., Chan Y. C., Komatitsch D., et al., 2009. Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the spectral-element method and LiDAR DTM. Bulletin of the Seismological Society of America, 99(2A): 681−693. doi: 10.1785/0120080264
    Liu Y., Yao H. J., Zhang H. J., et al., 2021. The community velocity model V. 1.0 of Southwest China, constructed from joint body- and surface-wave travel-time tomography. Seismological Research Letters, 92(5): 2972−2987. doi: 10.1785/0220200318
    Ma Q., Wang F. C., Tao D. W., et al., 2021. Topographic site effects of Xishan park ridge in Zigong city, Sichuan considering epicentral distance. Journal of Seismology, 25(6): 1537−1555. doi: 10.1007/s10950-021-10048-7
    Patera A. T., 1984. A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics, 54(3): 468−488. doi: 10.1016/0021-9991(84)90128-1
    Sepúlveda S. A., Murphy W., Jibson R. W., et al., 2005. Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: the case of Pacoima Canyon, California. Engineering Geology, 80(3-4): 336−348. doi: 10.1016/j.enggeo.2005.07.004
    Somerville P., Irikura K., Graves R., et al., 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70(1): 59−80. doi: 10.1785/gssrl.70.1.59
    Stone I., Wirth E. A., Frankel A. D., 2022. Topographic response to simulated Mw 6.5−7.0 earthquakes on the Seattle fault. Bulletin of the Seismological Society of America, 112(3): 1436−1462. doi: 10.1785/0120210269
    Wald D. J., Allen T. I., 2007. Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97(5): 1379−1395. doi: 10.1785/0120060267
    Wang G., Du C. Y., Huang D. R., et al., 2018. Parametric models for 3D topographic amplification of ground motions considering subsurface soils. Soil Dynamics and Earthquake Engineering, 115: 41−54. doi: 10.1016/j.soildyn.2018.07.018
    Wang X. C., Wang J. T., Zhang L., et al., 2021a. A multidimension source model for generating broadband ground motions with deterministic 3D numerical simulations. Bulletin of the Seismological Society of America, 111(2): 989−1013. doi: 10.1785/0120200221
    Wang X. C., Wang J. T., Zhang L., et al., 2021b. Broadband ground-motion simulations by coupling regional velocity structures with the geophysical information of specific sites. Soil Dynamics and Earthquake Engineering, 145: 106695. doi: 10.1016/j.soildyn.2021.106695
    Yuan Y. O., Lacasse M. D., Liu F. S., 2021. Full-wavefield, full-domain deterministic modeling of shallow low-magnitude events for improving regional ground-motion predictions. Bulletin of the Seismological Society of America, 111(5): 2617−2634. doi: 10.1785/0120210031
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 网络出版日期:  2025-07-17
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回