• ISSN 1673-5722
  • CN 11-5429/P

基于Pushover方法的漫滩软土区地铁车站抗震分析

姚任行 涂智溢 王仰君 蒋家卫 吴琪 张江伟

姚任行,涂智溢,王仰君,蒋家卫,吴琪,张江伟,2023. 基于Pushover方法的漫滩软土区地铁车站抗震分析. 震灾防御技术,18(3):614−619. doi:10.11899/zzfy20230318. doi: 10.11899/zzfy20230318
引用本文: 姚任行,涂智溢,王仰君,蒋家卫,吴琪,张江伟,2023. 基于Pushover方法的漫滩软土区地铁车站抗震分析. 震灾防御技术,18(3):614−619. doi:10.11899/zzfy20230318. doi: 10.11899/zzfy20230318
Yao Renxing, Tu Zhiyi, Wang Yangjun, Jiang Jiawei, Wu Qi, Zhang Jiangwei. Pushover Method Based Seismic Analysis for Subway Station Built in the Floodplain Soft Soil Area[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 614-619. doi: 10.11899/zzfy20230318
Citation: Yao Renxing, Tu Zhiyi, Wang Yangjun, Jiang Jiawei, Wu Qi, Zhang Jiangwei. Pushover Method Based Seismic Analysis for Subway Station Built in the Floodplain Soft Soil Area[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 614-619. doi: 10.11899/zzfy20230318

基于Pushover方法的漫滩软土区地铁车站抗震分析

doi: 10.11899/zzfy20230318
基金项目: 国家自然科学基金(52008206);河北省自然科学基金(E2019403153)
详细信息
    作者简介:

    姚任行,男,生于1984年。硕士。主要从事城市轨道交通防灾减灾研究。E-mail:13615740671@139.com

    通讯作者:

    吴琪,男,生于1991年。博士,副教授,硕士生导师。主要从事海洋岩土动力特性研究。E-mail:qw09061801@163.com

Pushover Method Based Seismic Analysis for Subway Station Built in the Floodplain Soft Soil Area

  • 摘要: 为研究地下结构Pushover分析方法在不同条件下的适用性,基于有限元软件平台,建立长江漫滩区地铁车站土-结构二维有限元分析模型,分别采用非线性动力时程分析方法与地下结构Pushover分析方法对5种不同土体刚度模型进行抗震分析。峰值层间位移角与峰值内力的分析结果表明,当土体刚度与结构刚度一致时,地下结构Pushover分析方法计算结果与非线性动力时程分析方法计算结果相近,而当土体刚度小于结构刚度或土体刚度大于结构刚度时,Pushover分析方法计算精度下降。
  • 图  1  地下结构Pushover方法力学模型

    Figure  1.  Mechanics model of underground structure pushover method

    图  2  地铁车站断面尺寸

    Figure  2.  Section dimension of subway station

    图  3  有限元分析模型

    Figure  3.  Finite element analysis model

    图  4  加速度时程曲线

    Figure  4.  Acceleration time history curve

    表  1  地铁车站土层物理参数

    Table  1.   The soil parameters of subway station

    编号土体深度/m密度/(kg·m−3剪切波速/(m·s−1泊松比
    1回填土21 7001470.35
    2粉质黏土62 0201900.35
    3黏土72 0001930.36
    4粉细砂22 0502740.33
    5黏土102 0203000.36
    6粉细砂32 0503280.33
    7黏土21 9903310.36
    8细砂62 0503680.33
    9粉质黏土72 0003820.35
    10花岗岩2 5007000.25
    下载: 导出CSV

    表  2  计算结果

    Table  2.   Summary of calculation results

    工况
    编号
    土-结构
    刚度比
    层间位移角/mm轴力/(kN·m−1剪力/(kN·m−1弯矩/[(kN·m)m−1]
    动力时程分析Pushover分析动力时程分析Pushover分析动力时程分析Pushover分析动力时程分析Pushover分析
    A0.251.691.5801 3111 295111110412415
    B0.361.471.5001 3091 280113112414416
    C1.000.890.8951 2691 249104104372369
    D1.400.570.4901 1831 1677869270238
    F2.000.380.3401 1421 1405954201182
    下载: 导出CSV

    表  3  计算误差

    Table  3.   Computed error

    工况编号土-结构刚度比层间位移角误差/%轴力误差/%剪力误差/%弯矩误差/%
    A0.25−6.51−1.22−4.51.46
    B0.362.04−2.22−4.422.9
    C1.000.56−1.580.96−0.81
    D1.40−14.04−1.35−11.54−11.85
    F2.00−10.53−0.18−8.47−9.45
    下载: 导出CSV
  • 还毅, 方秦, 柳锦春等, 2011. 考虑时空耦联的等效惯性加速度加载的地下结构pushover分析. 地震工程与工程振动, 31(4): 64—70

    Huan Y. , Fang Q. , Liu J. C. , et al. , 2011. Pushover analysis of underground structures by the time-space coupled equivalent inertial acceleration. Journal of Earthquake Engineering and Engineering Vibration, 31(4): 64—70. (in Chinese)
    刘晶波, 刘祥庆, 李彬, 2008. 地下结构抗震分析与设计的Pushover分析方法. 土木工程学报, 41(4): 73—80

    Liu J. B. , Liu X. Q. , Li B. , 2008. A pushover analysis method for seismic analysis and design of underground structures. China Civil Engineering Journal, 41(4): 73—80. (in Chinese)
    刘晶波, 刘祥庆, 薛颖亮, 2009. 地下结构抗震分析与设计的Pushover方法适用性研究. 工程力学, 26(1): 49—57

    Liu J. B. , Liu X. Q. , Xue Y. L. , 2009. Study on applicability of a pushover analysis method for seismic analysis and design of underground structures. Engineering Mechanics, 26(1): 49—57. (in Chinese)
    彭有宝, 王鑫, 2017. 轨道交通地下结构抗震设计相关反应加速度法分析. 地震工程学报, 39(6): 1037—1045

    Peng Y. B. , Wang X. , 2017. Analysis of the response acceleration method related to the seismic design of underground rail transit structures. China Earthquake Engineering Journal, 39(6): 1037—1045. (in Chinese)
    曲哲, 叶列平, 2011. 基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型. 工程力学, 28(6): 45—51

    Qu Z. , Ye L. P. , 2010. Strength deterioration model based on effective hysteretic energy dissipation for RC members under cyclic loading. Engineering Mechanics, 28(6): 45—51. (in Chinese)
    许成顺, 许紫刚, 杜修力等, 2017. 地下结构抗震简化分析方法比较研究. 地震工程与工程振动, 37(2): 65—80

    Xu C. S. , Xu Z. G. , Du X. L. , et al. , 2017. Comparative study of simplified methods for seismic analysis of underground structure. Earthquake Engineering and Engineering Vibration, 37(2): 65—80. (in Chinese)
    禹海涛, 袁勇, 张中杰等, 2011. 反应位移法在复杂地下结构抗震中的应用. 地下空间与工程学报, 7(5): 857—862

    Yu H. T. , Yuan Y. , Zhang Z. J. , et al. , 2011. Application of response displacement method on seismic design of a complex underground structure. Chinese Journal of Underground Space and Engineering, 7(5): 857—862. (in Chinese)
    Hleibieh J. , Wegener D. , Herle I. , 2014. Numerical simulation of a tunnel surrounded by sand under earthquake using a hypoplastic model. Acta Geotechnica, 9(4): 631—640. doi: 10.1007/s11440-013-0294-8
    Iida H. , Hiroto T. , Yoshida N. , et al. , 1996. Damage to Daikai subway station. Soils and Foundations, 36(Special): 283—300. doi: 10.3208/sandf.36.Special_283
    Jiang J. W. , Xu C. S. , El Naggar H. M. , et al. , 2021. Improved pushover method for seismic analysis of shallow buried underground rectangular frame structure. Soil Dynamics and Earthquake Engineering, 140: 106363. doi: 10.1016/j.soildyn.2020.106363
    Ma C. , Lu D. C. , Du X. L. , et al. , 2019. Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes. Soil Dynamics and Earthquake Engineering, 119: 265—280. doi: 10.1016/j.soildyn.2019.01.017
    Newmark N. M., 1968. Problems in wave propagation in soil and rock. In: Proceedings of International Symposium on Wave Propagation and Dynamic Properties of Earth Materials. Albuquerque: University of New Mexico Press, 7—26.
    Penzien J. , 2000. Seismically induced racking of tunnel linings. Earthquake Engineering & Structural Dynamics, 29(5): 683—691.
    Tsinidis G. , Pitilakis K. , Trikalioti A. D. , 2014. Numerical simulation of round robin numerical test on tunnels using a simplified kinematic hardening model. Acta Geotechnica, 9(4): 641—659. doi: 10.1007/s11440-013-0293-9
    Xu Z. G. , Du X. L. , Xu C. S. , et al. , 2019. Numerical research on seismic response characteristics of shallow buried rectangular underground structure. Soil Dynamics and Earthquake Engineering, 116: 242—252. doi: 10.1016/j.soildyn.2018.10.030
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  27
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回