• ISSN 1673-5722
  • CN 11-5429/P

近断层脉冲型地震动作用下黏滞阻尼器减震结构能量分布与耗散研究

吴亚丽 黄欢

吴亚丽,黄欢,2023. 近断层脉冲型地震动作用下黏滞阻尼器减震结构能量分布与耗散研究. 震灾防御技术,18(3):604−613. doi:10.11899/zzfy20230317. doi: 10.11899/zzfy20230317
引用本文: 吴亚丽,黄欢,2023. 近断层脉冲型地震动作用下黏滞阻尼器减震结构能量分布与耗散研究. 震灾防御技术,18(3):604−613. doi:10.11899/zzfy20230317. doi: 10.11899/zzfy20230317
Wu Yali, Huang Huan. Seismic Energy Distribution and Dissipation of Structures with Viscous Dampers under Near-fault Pulse-type Earthquakes[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 604-613. doi: 10.11899/zzfy20230317
Citation: Wu Yali, Huang Huan. Seismic Energy Distribution and Dissipation of Structures with Viscous Dampers under Near-fault Pulse-type Earthquakes[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 604-613. doi: 10.11899/zzfy20230317

近断层脉冲型地震动作用下黏滞阻尼器减震结构能量分布与耗散研究

doi: 10.11899/zzfy20230317
基金项目: 国家重点研发计划(2017YFC0703403);开封市科技计划(1904044)
详细信息
    作者简介:

    吴亚丽,女,生于1983年。讲师。主要从事建筑结构抗震与减震研究。E-mail:25386958@qq.com

Seismic Energy Distribution and Dissipation of Structures with Viscous Dampers under Near-fault Pulse-type Earthquakes

  • 摘要: 为研究近断层脉冲型地震动对黏滞阻尼器减震结构抗震性能的影响,从结构在地震动作用下的能量分配与耗散机制角度进行探讨分析。基于结构能量平衡原理,利用MATLAB软件编写减震结构能量响应求解程序,利用该程序计算分析减震结构与无控结构在不同近断层脉冲型地震动作用下的能量分布特点,并分析减震结构在近断层非脉冲型和脉冲型地震动作用下的能量分布与结构变形的差异性,进一步揭示脉冲周期Tp对减震结构塑性耗能分布的影响规律。研究结果表明,在不同近断层地震动作用下,附设黏滞阻尼器的减震结构表现出了不同的减震效果,其塑性变形程度受结构自振周期与脉冲周期之比的影响较显著。当结构在遭遇地震之前的基本周期与脉冲周期之比T0/Tp接近于1时,结构因共振效应导致其塑性变形显著增大,其地震损伤程度较严重;当T0/Tp远大于1,或当T0/Tp小于1且结构在遭遇地震之后的基本周期与脉冲周期之比T1/Tp同时远小于1时,减震结构可避开共振频段,其塑性变形显著减小,且在近断层脉冲型地震动作用下的抗震性能得到提高。
  • 图  1  双线性恢复力模型

    Figure  1.  Bilinear restoring force model

    图  2  8层钢框架结构模型

    Figure  2.  An 8-story steel frame structure model

    图  3  n1 地震动作用下减震结构地震能量分布

    Figure  3.  Energy distribution of structure with viscous dampers under N1 ground motion

    图  4  70 Gal 地震动作用下无控结构与减震结构能量分布

    Figure  4.  Energy dissipation distribution of the structure with and without viscous dampers under small earthquakes (70 Gal)

    图  5  400 Gal 非脉冲型地震动作用下减震结构最大变形

    Figure  5.  Maximum deformation of the structure with viscous dampers under no-pulse type large earthquakes (400 Gal)

    图  6  400 Gal 脉冲型地震动作用下减震结构最大变形

    Figure  6.  Maximum deformation of the structure with viscous dampers under pulse-type large earthquakes (400 Gal)

    图  7  400 Gal 非脉冲型地震动作用下减震结构耗能分布

    Figure  7.  Energy dissipation distribution of the structure with viscous dampers under no-pulse type large earthquakes (400 Gal)

    图  8  400 Gal 脉冲型地震动作用下减震结构耗能分布

    Figure  8.  Energy dissipation distribution of the structure with viscous dampers under pulse type large earthquakes (400 Gal)

    图  9  400 Gal 近断层地震动作用下减震结构地震总输入能

    Figure  9.  Energy dissipation distribution of the structure with viscous dampers under near-fault ground motions (400 Gal)

    图  10  减震结构基本周期与地震动记录脉冲周期之比

    Figure  10.  Period ratio of the fundamental period of the structure to the pulse period

    图  11  400 Gal 地震动作用下无控结构与减震结构塑性耗能沿结构楼层的分布

    Figure  11.  Distribution of the plastic strain energy of the structures with and without dampers under large earthquakes (400 Gal)

    表  1  梁柱截面尺寸

    Table  1.   Cross sectional dimensions of beams and columns

    构件名称构件所在位置构件尺寸/mm
    1~4层5~8层
    ①~④轴600×200×10×15600×200 ×10 ×15
    A、E轴600×200×12 ×20600×200×12×20
    B、C、D轴600×300×12×20600×300×12×20
    边柱400×14380×8
    中柱450×20400×14
    下载: 导出CSV

    表  2  等效的多质点层剪切模型

    Table  2.   Equivalent multi particle layer shear model

    楼层质量/ty向刚度/(kN·m−1
    1400.3333.7×103
    2400.3210.1×103
    3400.3196.4×103
    4400.3191.8×103
    5394.3149.3×103
    6394.3148.5×103
    7394.3148.3×103
    8394.3144.7×103
    下载: 导出CSV

    表  3  简化模型与实际结构y向前三阶周期对比

    Table  3.   Comparison of simplified model and actual structure in y-direction with first three natural vibration periods

    阶次周期/s
    MATLAB简化模型程序YJK软件
    第一阶1.501.51
    第二阶0.540.52
    第三阶0.330.30
    下载: 导出CSV

    表  4  阻尼器布置

    Table  4.   Layout of fluid viscous damper

    阻尼器布置楼 层
    1层2层3层4层5层6层7层8层
    $ {\alpha _0} $0.40.40.40.40.40.40.60.6
    $ {C_{{{{\rm{d}}j}}}} $/[(kN·s)·m−1]960960840840840840680680
    下载: 导出CSV

    表  5  近断层脉冲型地震动记录信息

    Table  5.   Information of near-fault pulse-type ground motion records

    编号地震选用的分量震级/级断层距/kmPGA/gPGV/(cm·s−1Tp/s
    n1Parkfield-02CARSN4126_SC10906.003.790.68335.970.64
    n2Duzce TurkeyRSN1602_BOL0907.1412.040.80665.850.88
    n3San SalvadorRSN569_NGI2705.806.990.53472.951.02
    n4Northern Calif-03RSN20_FRN0446.5027.020.16336.052.05
    n5Darfield New ZealandRSN6906_GDLCS35W7.001.220.708100.282.24
    n6Imperial Valley-06RSN159_AGR0036.530.650.28734.922.45
    n7Kobe JapanRSN1114_PRI0006.903.310.34890.632.83
    n8Darfield New ZealandRSN6911_HORCS72E7.007.290.47769.824.02
    n9Imperial Valley-06RSN182_E072306.530.560.469113.084.28
    n10Kocaeli TurkeyRSN1176_YPT1507.514.830.32271.854.54
    n11Imperial Valley-06RSN185_HVP2256.537.500.25853.115.15
    n12WestmorlandRSN316_PTS2255.9016.660.23255.555.36
    n13Imperial Valley-06RSN184_EDA2706.535.090.35375.545.97
    n14LandersRSN900_YER2707.2823.620.24551.107.50
    下载: 导出CSV

    表  6  近断层非脉冲型地震动记录信息

    Table  6.   Information of near-fault no pulse ground motion records

    编号地震选用的分量震级/级断层距/kmPGA/g
    np1Northern Calif-03RSN20_FRN3146.5027.020.203
    np2Imperial Valley-06RSN161_BRA3156.5310.420.220
    np3LandersRSN900_YER3607.2823.620.152
    np4Kobe_ JapanRSN1114_PRI0906.903.310.290
    np5Parkfield-02_ CARSN4102_C030906.003.630.326
    np6El Mayor-Cucapah_ MexicoRSN5825_GEO0007.2010.920.286
    np7El Mayor-Cucapah_ MexicoRSN5829_RII0007.2013.710.397
    np8Darfield_ New ZealandRSN6887_CBGSN89 W7.0018.050.155
    np9Darfield_ New ZealandRSN6911_HORCN18 E7.007.290.450
    np10Darfield_ New ZealandRSN6966_SHLCS40 W7.0022.330.167
    下载: 导出CSV
  • 贾俊峰, 杜修力, 韩强, 2015. 近断层地震动特征及其对工程结构影响的研究进展. 建筑结构学报, 36(1): 1—12 doi: 10.14006/j.jzjgxb.2015.01.001

    Jia J. F. , Du X. L. , Han Q. , 2015. A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures. Journal of Building Structures, 36(1): 1—12. (in Chinese) doi: 10.14006/j.jzjgxb.2015.01.001
    李明, 谢礼立, 翟长海等, 2009. 近断层地震动区域的划分. 地震工程与工程振动, 29(5): 20—25 doi: 10.13197/j.eeev.2009.05.004

    Li M. , Xie L. L. , Zhai C. H. , et al. , 2009. Scope division of near-fault ground motion. Journal of Earthquake Engineering and Engineering Vibration, 29(5): 20—25. (in Chinese) doi: 10.13197/j.eeev.2009.05.004
    秋山宏, 2010. 基于能量平衡的建筑结构抗震设计. 叶列平, 裴星洙, 译. 北京: 清华大学出版社.

    Qiu S. H. , 2010. Earthquake-resistant design method for buildings based on energy balance. Ye L. P. , Pei X. S. , trans. Beijing: Tsinghua University Press. (in Chinese)
    徐龙军, 胡进军, 谢礼立, 2008. 特殊长周期地震动的参数特征研究. 地震工程与工程振动, 28(6): 20—27 doi: 10.13197/j.eeev.2008.06.008

    Xu L. J. , Hu J. J. , Xie L. L. , 2008. On characteristics of ground motion parameters for special long-period ground motions. Earthquake Engineering and Engineering Vibration, 28(6): 20—27. (in Chinese) doi: 10.13197/j.eeev.2008.06.008
    许智星, 孙颖, 谷音等, 2013. 长周期地震动参数及频谱特征. 福州大学学报(自然科学版), 41(4): 760—764

    Xu Z. X. , Sun Y. , Gu Y. , et al. , 2013. The parameter and spectrum signature of long-period ground motion. Journal of Fuzhou University (Natural Science Edition), 41(4): 760—764. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    Baker J. W. , 2007. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5): 1486—1501. doi: 10.1785/0120060255
    Banazadeh M. , Ghanbari A. , 2017. Seismic performance assessment of steel moment-resisting frames equipped with linear and nonlinear fluid viscous dampers with the same damping ratio. Journal of Constructional Steel Research, 136: 215—228. doi: 10.1016/j.jcsr.2017.05.022
    Dicleli M. , Mehta A. , 2007. Effect of near-fault ground motion and damper characteristics on the seismic performance of chevron braced steel frames. Earthquake Engineering & Structural Dynamics, 36(7): 927—948.
    Xu Z. , Agrawal A. K. , He W. L. , et al. , 2007. Performance of passive energy dissipation systems during near-field ground motion type pulses. Engineering Structures, 29(2): 224—236. doi: 10.1016/j.engstruct.2006.04.020
    Zhang J., Wang X., 2012. Optimal nonlinear damping for inelastic structures using dimensional analysis. In: 20 th Analysis and Computation Specialty Conference. Chicago: ASCE.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  21
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回