• ISSN 1673-5722
  • CN 11-5429/P

基于离散单元法碎石垫层隔震性能的宏细观分析

张昕 戴国亮 栾阳 张倩 贾其军

张昕,戴国亮,栾阳,张倩,贾其军,2023. 基于离散单元法碎石垫层隔震性能的宏细观分析. 震灾防御技术,18(3):595−603. doi:10.11899/zzfy20230316. doi: 10.11899/zzfy20230316
引用本文: 张昕,戴国亮,栾阳,张倩,贾其军,2023. 基于离散单元法碎石垫层隔震性能的宏细观分析. 震灾防御技术,18(3):595−603. doi:10.11899/zzfy20230316. doi: 10.11899/zzfy20230316
Zhang Xin, Dai Guoliang, Luan Yang, Zhang Qian, Jia Qijun. Macro and Micro Analysis of Seismic Isolation Performance of Gravel Cushion Based on Discrete Element Method[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 595-603. doi: 10.11899/zzfy20230316
Citation: Zhang Xin, Dai Guoliang, Luan Yang, Zhang Qian, Jia Qijun. Macro and Micro Analysis of Seismic Isolation Performance of Gravel Cushion Based on Discrete Element Method[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 595-603. doi: 10.11899/zzfy20230316

基于离散单元法碎石垫层隔震性能的宏细观分析

doi: 10.11899/zzfy20230316
基金项目: 中交集团重点科研课题(2016-zjjt-24)
详细信息
    作者简介:

    张昕,男,生于1975年。高级工程师。主要从事工程项目管理及岩土工程抗震方面研究工作。E-mail:zhangx@crbc.com

    通讯作者:

    贾其军,男,生于1976年。博士,高级工程师。主要从事岩土工程研究工作。E-mail:18513671198@163.com

Macro and Micro Analysis of Seismic Isolation Performance of Gravel Cushion Based on Discrete Element Method

  • 摘要: 为研究非接触桩箱复合基础中碎石垫层隔震性能,采用颗粒流软件PFC3D对碎石垫层和沉箱进行模拟分析,从宏细观多角度对碎石垫层隔震性能进行分析。研究结果表明,竖向压力、垫层厚度对垫层隔震效果的影响较大;地震动加载过程中,垫层底部颗粒水平相对位移较大,垫层中上部颗粒水平相对位移较小,颗粒配位数及垫层孔隙率与碎石垫层隔震效果关系密切。
  • 图  1  非接触桩箱复合基础组成示意

    Figure  1.  Non-contact pile box composite foundation

    图  2  垫层数值模型

    Figure  2.  Numerical simulation model of bedding layer

    图  3  输入地震动加速度时程曲线

    Figure  3.  Input seismic recording acceleration timehistory curves

    图  4  非接触桩箱复合基础水平承载力变化曲线

    Figure  4.  Horizontal bearing capacity change curves of non-contact pile box composite foundation

    图  5  非接触桩箱复合基础水平荷载-位移关系曲线

    Figure  5.  Horizontal load-displacement relationship curves of non-contact pile box composite foundation

    图  6  不同时刻垫层内颗粒平均位移

    Figure  6.  Average displacement of particles of bedding layer under different moments

    图  7  不同时刻垫层内颗粒平均加速度

    Figure  7.  Average acceleration of particles of bedding layer under different moments

    图  8  不同时刻垫层内颗粒平均位移

    Figure  8.  Average particle displacement of bedding layer under different moments

    图  9  不同时刻垫层内颗粒平均加速度

    Figure  9.  Average acceleration of particles of bedding layer under different moments

    图  10  不同时刻垫层内颗粒平均位移

    Figure  10.  Average particle displacement of particles of bedding layer under different moments

    图  11  不同时刻垫层内颗粒平均加速度

    Figure  11.  Average acceleration of particles of bedding layer under different moments

    图  12  垫层平均孔隙率随时间变化曲线

    Figure  12.  Average porosity curves of bedding layer

    图  13  垫层平均配位数随时间变化曲线

    Figure  13.  Average matting coordination number of bedding layer

    图  14  输入地震动加速度时程曲线

    Figure  14.  Input acceleration timehistory curve

    图  15  垫层不同高度处平均孔隙率随时间变化曲线

    Figure  15.  Mean porosity curves at different heights of bedding layer

    图  16  垫层不同高度处颗粒平均配位数随时间变化曲线

    Figure  16.  Curve of mean particle coordination number at different heights of bedding layer

    表  1  垫层材料参数

    Table  1.   Bedding material parameters

    参数数值
    粒径/mm5.2,3.1~7.0,0.1~9.9
    厚度/mm20.0,30.0,40.0,60.0
    阻尼比0.055
    黏聚力/kPa0
    重度/(kN·m−316.51
    颗粒间摩擦系数0.57
    侧限压缩模量/MPa60.1
    下载: 导出CSV

    表  2  隔震率对比

    Table  2.   Comparison of isolation ratio

    方案编号垫层厚度/mm压力/kPa输入加速度/(m·s−2输出加速度/(m·s−2数值模拟减震率/%文献减震率/%误差/%
    1-12003.53.441.7050.657.111.4
    1-22008.33.402.3530.932.13.8
    1-33003.53.411.5255.436.8433.5
    1-43008.33.411.7847.844.117.7
    下载: 导出CSV
  • 董学武, 周世忠, 2004. 希腊里翁-安蒂里翁大桥的设计与施工. 世界桥梁, 32(4): 1—4

    Dong X. W. , Zhou S. Z. , 2004. Design and construction of Rion-Antirion bridge in Greece. World Bridges, 32(4): 1—4. (in Chinese)
    范立础, 王君杰, 2001. 桥梁抗震设计规范的现状与发展趋势. 地震工程与工程振动, 21(2): 70—77 doi: 10.3969/j.issn.1000-1301.2001.02.013

    Fan L. C. , Wang J. J. , 2001. Design code for earthquake-resistance of bridges: current situation and trend. Earthquake Engineering and Engineering Vibration, 21(2): 70—77. (in Chinese) doi: 10.3969/j.issn.1000-1301.2001.02.013
    李志强, 栾阳, 张倩等, 2018. 碎石垫层隔震性能离散元数值分析. 公路, 63(1): 158—164.
    刘宗华, 2012. 土耳其Izmit海湾大桥主塔基础设计与施工构思. 施工技术, 41(17): 11—13, 20

    Liu Z. H. , 2012. The conception of main tower foundation design and construction for Izmit bay bridge in turkey. Construction Technology, 41(17): 11—13, 20. (in Chinese)
    吕伟华, 缪林昌, 2013. 刚性桩复合地基桩土应力比计算方法. 东南大学学报(自然科学版), 43(3): 624—628

    Lv W. H. , Miao L. C. , 2013. Calculation method of pile-soil stress ratio of rigid pile composite foundation. Journal of Southeast University (Natural Science Edition), 43(3): 624—628. (in Chinese)
    南文文, 2015. 沉箱-垫层-桩复合深水基础水平承载性能研究. 南京: 东南大学, 43—51

    Nan W. W., 2015. Experimental study on bearing performance of caisson-cushion-pile deepwater composite foundation under lateral loads. Nanjing: Southeast University, 43—51. (in Chinese)
    陶景晖, 梁书亭, 龚维明等, 2009. 高层建筑刚性桩复合地基承载受力性状研究. 东南大学学报(自然科学版), 39(S2): 238—245

    Tao J. H. , Liang S. T. , Gong W. M. , et al. , 2009. Study on bearing behavior of composite foundation with rigid pile for high-rise buildings. Journal of Southeast University (Natural Science Edition), 39(S2): 238—245. (in Chinese)
    魏磊, 2013. 村镇建筑基础下碎石垫层隔震性能试验研究. 西安: 西安建筑科技大学, 21—35

    Wei L., 2013. An experimental research on seismic reduced function gravel layer under rural buildings foundation. Xi'an: Xi'an University of Architecture and Technology, 21—35. (in Chinese)
    姚国伟, 2011. 复合地基褥垫层减震研究. 广州: 广州大学, 38—41

    Yao G. W., 2011. Study on seismic reduced function of composite foundation cushion. Guangzhou: Guangzhou University, 38—41. (in Chinese)
    赵少伟, 窦远明, 郭蓉等, 2005. 基础下砂垫层隔震性能振动台试验研究. 河北工业大学学报, 34(3): 92—97 doi: 10.14081/j.cnki.hgdxb.2005.03.019

    Zhao S. W. , Dou Y. M. , Guo R. , et al. , 2005. An experimental study of isolating properties of sand cushion under the foundation by shaking table. Journal of Hebei University of Technology, 34(3): 92—97. (in Chinese) doi: 10.14081/j.cnki.hgdxb.2005.03.019
    Anastasopoulos I. , Gazetas G. , Loli M. , et al. , 2010. Soil failure can be used for seismic protection of structures. Bulletin of Earthquake Engineering, 8(2): 309—326. doi: 10.1007/s10518-009-9145-2
    Biesiadecki G. L., Dobry R., Leventis G. E., et al., 2004. Rion- Antirion Bridge foundations: A blend of design and construction innovation. In: Fifth International Conference on Case Histories in Geotechnical Engineering. New York: University of Missouri, 16.
    Combault J. , Pecker A. , Teyssandier J. P. , et al. , 2005. Rion-antirion bridge, Greece - concept, design, and construction. Structural Engineering International, 15(1): 22. doi: 10.2749/101686605777963387
    Dobry R. , Pecker A. , Mavroeidis G. P. , et al. , 2003. Damping/global energy balance in FE model of bridge foundation lateral response. Soil Dynamics and Earthquake Engineering, 23(6): 483—495. doi: 10.1016/S0267-7261(03)00050-2
    Lyngs J. H., Kasper T., Bertelsen K. S., 2013. Modelling of soil-structure interaction for seismic analyses of the Izmit Bay Bridge. In: Proceedings of the 18 th International Conference on Soil Mechanics and Geotechnical Engineering. Paris: ICSMGE, 763—768.
    Pfauth T. , Poling J. , 2017. Strain measurement in a specimen subjected to out-of-plane movement: Using an open-source digital image correlation-based tool. The Journal of Purdue Undergraduate Research, 7(1): 7.
    Yang D., Dobry R., Peck R. B., 2001. Foundation-soil-inclusion interaction modelling for rion-antirion bridge seismic analysis. In: Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. New York: University of Missouri, 620.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  23
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回