• ISSN 1673-5722
  • CN 11-5429/P

2023年2月6日土耳其MW7.8帕扎尔哲克地震地表破裂特征分析

梁朋 田勤俭 徐岳仁 周晓成 熊仁伟 李文巧

梁朋,田勤俭,徐岳仁,周晓成,熊仁伟,李文巧,2023. 2023年2月6日土耳其MW7.8帕扎尔哲克地震地表破裂特征分析. 震灾防御技术,18(3):483−494. doi:10.11899/zzfy20230306. doi: 10.11899/zzfy20230306
引用本文: 梁朋,田勤俭,徐岳仁,周晓成,熊仁伟,李文巧,2023. 2023年2月6日土耳其MW7.8帕扎尔哲克地震地表破裂特征分析. 震灾防御技术,18(3):483−494. doi:10.11899/zzfy20230306. doi: 10.11899/zzfy20230306
Liang Peng, Tian Qinjian, Xu Yueren, Zhou Xiaocheng, Xiong Renwei, Li Wenqiao. The Surface Rupture Characteristics of MW7.8 Pazarcık Earthquake in Turkey on February 6, 2023[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 483-494. doi: 10.11899/zzfy20230306
Citation: Liang Peng, Tian Qinjian, Xu Yueren, Zhou Xiaocheng, Xiong Renwei, Li Wenqiao. The Surface Rupture Characteristics of MW7.8 Pazarcık Earthquake in Turkey on February 6, 2023[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 483-494. doi: 10.11899/zzfy20230306

2023年2月6日土耳其MW7.8帕扎尔哲克地震地表破裂特征分析

doi: 10.11899/zzfy20230306
基金项目: 基本科研业务费专项基金(CEAIEF20230602、2021IEF0104、CEAIEF2022050502、CEAIEF20230403、2020IEF0603)
详细信息
    作者简介:

    梁朋,男,生于1988年。副研究员。主要从事高分辨遥感、构造地貌研究工作。E-mail:liangpeng@ief.ac.cn

The Surface Rupture Characteristics of MW7.8 Pazarcık Earthquake in Turkey on February 6, 2023

  • 摘要: 2023年2月6日土耳其东南部连续发生2次7级以上破坏性地震,造成大量人员伤亡和建筑物损坏。基于高分辨率遥感系统解译了帕扎尔哲克7.8级地震地表破裂空间分布,结合野外科考验证、基于立体像对生成的高分辨率数字地表模型及余震精定位数据,对帕扎尔哲克7.8级地震地表破裂特征进行分析。该次地震地表破裂主要沿先前断层迹线发育,总长度约为320 km。地表破裂位置地貌特征、野外典型位置调查结果及余震精定位结果均显示该次地震以左旋走滑运动为主,局部伴有小规模垂向运动。最大左旋位移位于东安纳托利亚断裂帕扎尔哲克段,蒂尔克奥卢以南地表破裂逐渐不连续,左旋位错不明显。
  • 图  1  帕扎尔哲克地震的构造环境、余震分布与地表破裂

    Figure  1.  The Regional seismic structure, aftershock distribution and surface rupture of Pazarcık earthquake

    图  2  高分辨率影像分布范围

    Figure  2.  The cover region of high-resolution satellite images

    图  3  余震纵剖面

    Figure  3.  The depth profiles of the aftershock distribution

    图  4  帕扎尔哲克地震哈诺巴舍一带地表破裂与地貌特征

    Figure  4.  The surface rupture and geomorphic characteristics near Hanobası

    图  5  格尔巴舍南部地表破裂与地表特征

    Figure  5.  The surface rupture and geomorphology characteristics in the south of Gölbaşı

    图  6  卡赫拉曼马拉什东侧地表破裂与地貌特征

    Figure  6.  The surface rupture and geomorphology characteristics in the east of Kahramanmaraş

    图  7  贝伊奥卢与蒂尔克奥卢之间地表破裂与地貌特征

    Figure  7.  The characteristics of surface rupture and geomorphology between the Beyoğlu and Türkoğlu

    图  8  努尔达伊北侧地表破裂与地貌特征

    Figure  8.  The surface rupture and geomorphology characteristics in the north of Nurdağı

    图  9  努尔达伊南侧地表破裂与地貌特征

    Figure  9.  The surface rupture and geomorphology characteristics in the south of Nurdağı

    图  10  伊斯拉希耶附近地表破裂与地貌特征

    Figure  10.  The surface rupture and geomorphology characteristics near islahiye

    图  11  哈萨附近地表破裂与地貌特征

    Figure  11.  The surface rupture and geomorphology characteristics near Hassa

    图  12  安塔基亚至克勒克汉之间地表破裂特征

    Figure  12.  The characteristics of surface rupture between Antakya and Kırıkhan

  • Ding H. Y., Zhou Y. J., Ge Z. X., et al., 2023. High-resolution seismicity imaging and early aftershock migration of the 2023 kahramanmaraş (SE Türkiye) MW7.9 & 7.8 earthquake doublet. Earthquake Science, 36.
    Duman T. Y., Emre, Ö., 2013. The East Anatolian fault: geometry, segmentation and jog characteristics. Geological Society, London, Special Publications, 372: 495—529.
    Emre Ö., Duman T. Y., Olgun Ş., 2011. 1: 250, 000 Scale active fault map series of turkey, general directiorate of mineral research and exploration, Ankara-Tukey.
    Emre Ö., Duman T. Y., Özalp S., et al., 2013. Active fault map of turkey with an explanatory text 1: 1, 250, 000 scale. Ankara, Turkey: General Directorate of Mineral Research and Exploration.
    Emre Ö., Duman T. Y., Özalp S., et al., 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8): 3229−3275. doi: 10.1007/s10518-016-0041-2
    Feld C., Mechie J., Hübscher C., et al., 2017. Crustal structure of the Eratosthenes seamount, Cyprus and S. turkey from an amphibian wide-angle seismic profile. Tectonophysics, 700—701: 32—59.
    Guo Y. L., Li H. F., Liang P., et al., 2023. Preliminary report of coseismic surface rupture (part) of Turkey’s MW7.8 earthquake by remote sensing interpretation. (2023-04-06)[2023-07-16]https://doi.org/10.1016/j.eqrea.2023.100219
    Güvercin S. E., Karabulut H., Konca A. Ö., et al., 2022. Active seismotectonics of the East Anatolian fault. Geophysical Journal International, 230(1): 50−69. doi: 10.1093/gji/ggac045
    Jackson J., McKenzie D., 1988. The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International, 93(1): 45−73. doi: 10.1111/j.1365-246X.1988.tb01387.x
    Karabacak V., Altunel E., Meghraoui M., et al., 2010. Field evidences from northern Dead Sea Fault Zone (South Turkey): new findings for the initiation age and slip rate. Tectonophysics, 480(1-4): 172−182. doi: 10.1016/j.tecto.2009.10.001
    Karabacak V., Altunel E., 2013. Evolution of the northern dead sea fault zone in southern turkey. Journal of Geodynamics, 65: 282−291. doi: 10.1016/j.jog.2012.04.012
    Karabacak V., Özkaymak Ç., Sözbilir H., et al., 2023. The 2023 Pazarcık (Kahramanmaraş, Türkiye) earthquake (MW7.7): implications for surface rupture dynamics along the East Anatolian Fault Zone. Journal of the Geological Society, 180(3): jgs2023−020.
    Mahmoud Y., Masson F., Meghraoui M., et al., 2013. Kinematic study at the junction of the East Anatolian fault and the Dead Sea fault from GPS measurements. Journal of Geodynamics, 67: 30−39. doi: 10.1016/j.jog.2012.05.006
    Melgar D., Taymaz T., Ganas A., et al., 2023. Sub- and super-shear ruptures during the 2023 MW 7.8 and MW 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3).
    Okuwaki R., Yagi Y., Taymaz T., et al., 2023. Multi-scale rupture growth with alternating directions in a complex fault network during the 2023 south-eastern Türkiye and Syria earthquake doublet. Geophysical Research Letters, 50(12): e2023GL103480. doi: 10.1029/2023GL103480
    Over S., Ozden S., Yilmaz H., 2004. Late Cenozoic stress evolution along the Karasu Valley, SE Turkey. Tectonophysics, 380(1-2): 43−68. doi: 10.1016/j.tecto.2003.11.011
    Wu F., Xie J. J., An Z., Lyu C. H., et al., 2023. Pulse-like ground motion observed during the 6 February 2023 MW7.8 Pazarcık Earthquake (Kahramanmaraş, SE Türkiye). Earthquake Science, 36(4): 328−339. doi: 10.1016/j.eqs.2023.05.005
    Xu C. Y., Zhang Y., Hua S. B., et al., 2023. Rapid source inversions of the 2023 SE Türkiye earthquakes with teleseismic and strong-motion data. Earthquake Science, 36(4): 316−327. doi: 10.1016/j.eqs.2023.05.004
    Yönlü Ö., Altunel E., Karabacak V., 2017. Geological and geomorphological evidence for the southwestern extension of the East Anatolian Fault Zone, Turkey. Earth and Planetary Science Letters, 469: 1−14. doi: 10.1016/j.jpgl.2017.03.034
    Yürür M. T., Chorowicz J., 1998. Recent volcanism, tectonics and plate kinematics near the junction of the African, Arabian and Anatolian plates in the eastern Mediterranean. Journal of Volcanology and Geothermal Research, 85(1-4): 1−15. doi: 10.1016/S0377-0273(98)00046-8
    Zhao J. J., Chen Q., Yang Y. H. et al., 2023. Coseismic faulting model and post-seismic surface motion of the 2023 Turkey−Syria earthquake doublet revealed by InSAR and GPS measurements. Remote Sensing, 15(13): 3327. doi: 10.3390/rs15133327
  • 加载中
图(12)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  22
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-15
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回