• ISSN 1673-5722
  • CN 11-5429/P

在役隧道震害综合承灾度评价

李燕燕

李燕燕,2023. 在役隧道震害综合承灾度评价. 震灾防御技术,18(2):284−292. doi:10.11899/zzfy20230209. doi: 10.11899/zzfy20230209
引用本文: 李燕燕,2023. 在役隧道震害综合承灾度评价. 震灾防御技术,18(2):284−292. doi:10.11899/zzfy20230209. doi: 10.11899/zzfy20230209
Li Yanyan. Comprehensive Evaluation of Earthquake Sustainability of Existing Tunnels[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 284-292. doi: 10.11899/zzfy20230209
Citation: Li Yanyan. Comprehensive Evaluation of Earthquake Sustainability of Existing Tunnels[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 284-292. doi: 10.11899/zzfy20230209

在役隧道震害综合承灾度评价

doi: 10.11899/zzfy20230209
详细信息
    作者简介:

    李燕燕,女,生于1986年。硕士。高级工程师。主要从事建筑与土木工程方面的研究。E-mail:1173342063@qq.com

Comprehensive Evaluation of Earthquake Sustainability of Existing Tunnels

  • 摘要: 为客观评价在役隧道震害综合承灾情况,从隧道震害危险性的压力指标与隧道自身及所处工程环境的承压指标筛选具有代表性、可操作性的分级指标。以隧道承灾系统为研究主体,运用最小偏差法将主、客观权重集合,得到评价指标的组合权重,并利用GRA-TOPSIS法对在役隧道震害综合承灾度进行评价,确定隧道震害承灾情况。选取新疆某3个隧道中的5个区段为研究对象,运用GRA-TOPSIS法构建的隧道震害综合承灾度评价模型确定隧道震害承灾等级,评价结果与现场调查结果趋于一致。对影响承灾度的主要因素进行分析,可为各区段制定适宜的修复策略提供参考。
  • 图  1  评价指标主、客观权重确定流程

    Figure  1.  Flow chart for determining evaluation indicator of subjective and objective weight

    表  1  在役隧道震害综合承灾度评价指标体系与分级标准

    Table  1.   Evaluation index system and grading standard of comprehensive hazard-bearing degree of earthquake damage of in-service tunnels

    属性评价指标等级定性描述定量描述
    压力指标地震峰值加速度C1基本烈度<6度C1<1
    基本烈度6~7度1≤C1<1.8
    基本烈度7~8度1.8≤C1<2.6
    基本烈度8~9度2.6≤C1<3.4
    基本烈度>9度C1≥3.4
    断裂破碎带宽度C2无断层0
    存在落差20 m以下的小规模断层0<C2≤20
    存在落差20 m以上、30 m以下的较小规模断层20<C2≤30
    存在落差30 m以上、50 m以下的中等规模断层30<C2≤50
    存在落差50 m以上的大规模断层C2>50
    岩石风化程度C3完好0
    微风化0<C3≤25
    中等风化25<C3≤50
    强风化50<C3≤75
    全风化75<C3≤100
    地下水情况C4无地下水0
    点滴状地下水0<C4≤3
    淋雨状地下水3<C4≤6
    线状地下水6<C4≤10
    涌流状地下水10<C4≤12
    偏压(地表倾角)C5<15°C5<15
    15°~30°15≤C5<30
    30°~45°30≤C5<45
    45°~60°45≤C5<60
    >60°C5≥60
    承压指标围岩等级C6稳定岩石,裂隙不发育或稍发育C6>4.5
    岩石较新鲜,节理裂隙稍发育3.5≤C6<4.5
    岩石微风化,地质裂隙发育、部分张开充泥2.5≤C6<3.5
    软弱结构面多,岩体呈碎石状1.5≤C6<2.5
    散体C6<1.5
    支护结构与强度C7完好C7>150
    较好100≤C7<150
    中等50≤C7<100
    较差10≤C7<50
    很差C7<10
    隧道埋深C8埋深>300 mC8>300
    埋深100~300 m100<C8≤300
    埋深50~100 m50<C8≤100
    埋深10~50 m10<C8≤50
    埋深<10 mC8≤10
    承压指标岩体完整性C9完整性好0.90≤C9<1
    完整性较好0.75≤C9<0.90
    完整性中等0.50≤C9<0.75
    完整性较差0.20≤C9<0.50
    完整性差0≤C9<0.20
    岩石质量C10岩石质量好90<C10≤100
    岩石质量较好75<C10≤90
    岩石质量中等50<C10≤75
    岩石质量较差25<C10≤50
    岩石质量差C10≤25
    路面与附属设施
    易损程度C11
    完好0<C11≤2
    无明显受损2<C11≤4
    受损小于限值4<C11≤6
    受损接近限值6<C11≤8
    受损大于限值8<C11≤10
    等效截面积C12存在面积<20 m2的小断面C12<20
    存在面积20~45 m2的较小断面20≤C12<45
    存在面积45~70 m2的中等断面45≤C12<70
    存在面积70~120 m2的较大断面70≤C12<120
    存在面积>120 m2的大断面C12≥120
    下载: 导出CSV

    表  2  隧道震害数据统计结果

    Table  2.   Statistical table of tunnel seismic damage data

    类别拟评价项目
    C1 /gC2 /mC3C4C5 /(°)C6C7/MPaC8 /mC9C10 /%C11C12 /m2
    区段12.200081.80751080.80813.047.8
    区段22.225608.0351.4015300.30225.047.8
    区段32.220402.0451.6040220.55456.547.8
    区段42.015351.5202.40553240.80455.538.5
    区段51.940102.5502.40553310.40415.023.7
    正理想值0.50007.55.001754000.95951.010.0
    负理想值3.86087.511.572.50.75550.1012.59.0132.5
    下载: 导出CSV

    表  3  评价指标的权重

    Table  3.   Weights of evaluation indicators

    类别权重
    C1C2C3C4C5C6C7C8C9C10C11C12
    ${\omega '_k}$0.1880.0880.0440.1180.0750.1110.0570.0510.0820.0610.0680.057
    ${\omega ''_k}$0.0010.1790.2240.2880.0870.0040.0050.0560.0740.0470.0170.018
    ${\omega ^ * }$0.0890.1370.1400.2080.0820.0540.0300.0530.0770.0530.0410.036
    下载: 导出CSV

    表  4  评价指标统计数据的标准化处理

    Table  4.   Standardized processing of evaluation index statistics

    类别指标
    C1C2C3C4C5C6C7C8C9C10C11C12
    区段10.4761.0001.0001.0000.8930.3270.3750.2160.8000.8100.7000.670
    区段20.4760.6430.4000.3330.5330.2550.0750.0600.3000.2200.5000.670
    区段30.4760.7140.6000.8330.4000.2910.2000.0440.5500.4500.3500.670
    区段40.5240.7860.6500.8750.7330.4360.2750.6480.8000.4500.4500.734
    区段50.5480.4290.9000.7920.3330.4360.2750.6620.4000.4100.5000.837
    正理想值0.8811.0001.0001.0000.9000.9090.8750.8000.9500.9500.9000.931
    负理想值0.0950.1430.1250.0420.0330.1360.0250.0100.1000.1250.1000.086
    下载: 导出CSV
  • 鲍学英, 张健, 王起才, 2019. 西北寒旱地区铁路绿色施工等级评价研究. 铁道学报, 41(3): 33—39 doi: 10.3969/j.issn.1001-8360.2019.03.005

    Bao X. Y. , Zhang J. , Wang Q. C. , 2019. Study on grade evaluation of green railway construction in northwest cold and arid areas. Journal of the China Railway Society, 41(3): 33—39. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.005
    冯志泽, 胡政, 何钧等, 1994. 建立城市自然灾害承灾能力指标的思路探讨. 灾害学, (4): 40—44

    Feng Z. Z. , Hu Z. , He J. , et al. , 1994. A preliminary study on establishing the index of bearing-disaster capability of natural disasters in city. Journal of Catastrophology, (4): 40—44. (in Chinese)
    耿萍, 吴川, 唐金良等, 2012. 穿越断层破碎带隧道动力响应特性分析. 岩石力学与工程学报, 31(7): 1406—1413 doi: 10.3969/j.issn.1000-6915.2012.07.013

    Geng P. , Wu C. , Tang J. L. , et al. , 2012. Analysis of dynamic response properties for tunnel through fault fracture zone. Chinese Journal of Rock Mechanics and Engineering, 31(7): 1406—1413. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.07.013
    何健, 2009. 都汶公路隧道震害评估及修复研究. 成都: 成都理工大学.

    He J., 2009. Research on the damage evaluation and repair technology of Dujiangyan-WenChuan highway tunnels. Chengdu: Chengdu University of Technology. (in Chinese)
    中华人民共和国交通运输部, 2013. JTG B02—2013 公路工程抗震规范. 北京: 人民交通出版社.

    Ministry of Transport of the People's Republic of China, 2013. JTG B02 -- 2013 Seismic Code for highway engineering. Beijing: People's Communications Press.
    中华人民共和国交通运输部, 2015. JTG H12—2015 公路隧道养护技术规范. 北京: 人民交通出版社股份有限公司.

    Ministry of Transport of the People's Republic of China, 2015. JTG H12—2015 Technical Specification for Maintenance of Highway Tunnels. Beijing: People's Communications Press Co., LTD.
    刘东, 龚方华, 付强等, 2017. 基于博弈论赋权的灌溉用水效率GRA-TOPSIS评价模型. 农业机械学报, 48(5): 218—226 doi: 10.6041/j.issn.1000-1298.2017.05.027

    Liu D. , Gong F. H. , Fu Q. , et al. , 2017. Evaluation model of irrigation water use efficiency based on game theory and GRA-TOPSIS. Transactions of the Chinese Society for Agricultural Machinery, 48(5): 218—226. (in Chinese) doi: 10.6041/j.issn.1000-1298.2017.05.027
    孙强强, 薄景山, 孙有为等, 2016. 隧道结构地震反应分析研究现状. 世界地震工程, 32(2): 159—169

    Sun Q. Q. , Bo J. S. , Sun Y. W. , et al. , 2016. A state-of-the-art review of seismic response analysis of tunnels. World Earthquake Engineering, 32(2): 159—169. (in Chinese)
    叶清, 2003. 地震危险性、地震危害性和地震易损性. 福建地震, (2): 38—40

    Ye Q. , 2003. Seismic risk, seismic hazard and seismic friability. Fujian Seismology, (2): 38—40. (in Chinese)
    臧万军, 2017. 汶川地震公路隧道震害规律研究. 现代隧道技术, 54(2): 17—25 doi: 10.13807/j.cnki.mtt.2017.02.003

    Zang W. J. , 2017. Damage to highway tunnels caused by the Wenchuan earthquake. Modern Tunnelling Technology, 54(2): 17—25. (in Chinese) doi: 10.13807/j.cnki.mtt.2017.02.003
    翟强, 顾伟红, 2020. 基于EW-AHP和未确知测度理论的隧道坍塌风险评价. 安全与环境工程, 27(5): 92—97 doi: 10.13578/j.cnki.issn.1671-1556.2020.05.014

    Zhai Q. , Gu W. H. , 2020. Risk assessment of tunnel collapse by EW-AHP and unascertained measure theory. Safety and Environmental Engineering, 27(5): 92—97. (in Chinese) doi: 10.13578/j.cnki.issn.1671-1556.2020.05.014
    周建昆, 吴坚, 2008. 岩石公路隧道塌方风险事故树分析. 地下空间与工程学报, 4(6): 991—998 doi: 10.3969/j.issn.1673-0836.2008.06.001

    Zhou J. K. , Wu J. , 2008. Fault tree analysis of the collapse risk in rock highway tunnel. Chinese Journal of Underground Space and Engineering, 4(6): 991—998. (in Chinese) doi: 10.3969/j.issn.1673-0836.2008.06.001
    朱捷, 曾国伟, 胡国忠等, 2019. 基于事故统计分析的隧道坍塌施工安全风险评估. 公路交通科技(应用技术版), 15(9): 237—240.
    Hashash Y. M. A. , Hook J. J. , Schmidt B. , et al. , 2001. Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16(4): 247—293. doi: 10.1016/S0886-7798(01)00051-7
    Kuesel T. R. , 1969. Earthquake design criteria for subways. Journal of the Structural Division, 95(6): 1213—1231. doi: 10.1061/JSDEAG.0002292
    Yashiro K. , Kojima Y. , Shimizu M. , 2007. Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake. Quarterly Report of RTRI, 48(3): 136—141. doi: 10.2219/rtriqr.48.136
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  16
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回