• ISSN 1673-5722
  • CN 11-5429/P

地震动持时在工程抗震设计中的研究现状与展望

王志涛 王巨 郭小东

王志涛,王巨,郭小东,2023. 地震动持时在工程抗震设计中的研究现状与展望. 震灾防御技术,18(1):147−163. doi:10.11899/zzfy20230116. doi: 10.11899/zzfy20230116
引用本文: 王志涛,王巨,郭小东,2023. 地震动持时在工程抗震设计中的研究现状与展望. 震灾防御技术,18(1):147−163. doi:10.11899/zzfy20230116. doi: 10.11899/zzfy20230116
Wang Zhitao, Wang Ju, Guo Xiaodong. Research Status and Prospect of Earthquake Duration in Engineering Anti-seismic Design[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 147-163. doi: 10.11899/zzfy20230116
Citation: Wang Zhitao, Wang Ju, Guo Xiaodong. Research Status and Prospect of Earthquake Duration in Engineering Anti-seismic Design[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 147-163. doi: 10.11899/zzfy20230116

地震动持时在工程抗震设计中的研究现状与展望

doi: 10.11899/zzfy20230116
基金项目: 中国地震局工程力学研究所基本科研业务费专项(2019 EEEVL0501)
详细信息
    作者简介:

    王志涛,男,生于1980年。博士,副教授。主要从事抗震防灾研究。E-mail:wzt@bjut.edu.cn

    通讯作者:

    王巨,男,生于1993年。硕士研究生。主要从事抗震防灾研究。E-mail:15533909834@163.com

Research Status and Prospect of Earthquake Duration in Engineering Anti-seismic Design

  • 摘要: 长持时地震动对工程场地震害和建筑结构累积损伤具有不利影响,在工程结构抗震设计中选取地震波时,应充分考虑地震动持时的影响。通过文献梳理,对几类典型的地震动持时定义进行阐述,分析其特点与适用性,并总结持时影响因素及预测方程的研究进展。基于持时对结构抗震性能的影响,总结考虑持时的抗震设计方法研究现状,分析存在的问题,并对研究方向进行展望。
  • 表  1  我国典型地震动持时预测模型

    Table  1.   Domestic typical ground motion duration prediction model

    预测模型名称预测方程说明
    田文通模型 ${D_{{\rm{rs}}} } = {c_0} + {c_1}R + \sigma$ ${D_{{\rm{rs}}} }$为90%重要持时,$ R $为震中距,$ \sigma $为标准差,对水平向和竖向持时分别进行回归分析。
    白玉柱模型 $\lg {D_{{\rm{rs}}} } = {c_0} + {c_1}\ln {R_{{\rm{rup}}} } + \sigma$ ${D_{{\rm{rs}}} }$为90%重要持时,对水平向和竖向持时分别进行回归分析。
    任叶飞模型 $D = {c_0} + {c_1}{R_{{\rm{rup}}} } + \sigma$ D为70%、90%重要持时和加速度阈值为0.025 g、0.05 g、0.1 g的绝对括号持时。
    刘浪模型 $\lg {D_{{\rm{rs}}} } = {b_0} + {b_1}{R_{{\rm{rup}}} } + {b_2}\lg {R_{{\rm{rup}}} } + \sigma$ ${D_{{\rm{rs}}} }$为70%、90%重要持时,对上盘区、下盘区水平向和竖向持时分别进行回归。
    霍俊荣模型 $\lg Y = a + bM + c\lg \left( {R + {R_0}} \right) + \sigma $ Y为地震动参数,主要用于地震安全性评价中地震动时程包络曲线平台段起点、平台段长度和下降段衰减因子的估计。
    王亚勇模型 $\lg {D_{{\rm{rs}}} } = a + bM + c\lg \left( {R + 30} \right) + {\rm{d}}T$ ${D_{{\rm{rs}}} }$为90%重要持时,T为场地卓越周期,$T = { {4 H} / { { {\overline V}_{\rm{s}}} } }$,${ {\overline V}_{\rm{s} } } = { {\displaystyle\sum\limits_i { {V_{{\rm{s}}i} }{h_i} } }/H}$, ${h}_{i}、{V}_{{\rm{s}}i}$分别为第$ i $层土厚度和剪切波速,H为场地覆盖层厚度。
    徐培彬模型 Bommer-Stafford-Alarcon模型 基于中国强震记录对水平向70%、90%重要持时进行回归。
    注:表中未说明的参数均为回归系数。
    下载: 导出CSV
  • 白玉柱, 徐锡伟, 2017. 由强震动数据分析芦山地震地面运动持时及周期特征. 地震地质, 39(1): 92—103

    Bai Y. Z. , Xu X. W. , 2017. Analysis on the characteristics of duration and period of ground motion of the Lushan earthquake based on the station records. Seismology and Geology, 39(1): 92—103. (in Chinese)
    鲍文博, 付亮华, 陆海燕等, 2015. 钢混框剪高层结构地震能量分布及耗散研究. 建筑科学与工程学报, 32(3): 38—45

    Bao W. B. , Fu L. H. , Lu H. Y. , et al. , 2015. Research on seismic energy distribution and dissipation of reinforced concrete frame-wall high-rise structure. Journal of Architecture and Civil Engineering, 32(3): 38—45. (in Chinese)
    陈亮, 李建中, 管仲国等, 2008. 强地面运动持时对钢筋混凝土桥墩地震需求的影响. 振动与冲击, 27(11): 154—159

    Chen L. , Li J. Z. , Guan Z. G. , et al. , 2008. Influence of strong-motions duration on seismic inelastic demand for columns of RC bridges. Journal of Vibration and Shock, 27(11): 154—159. (in Chinese)
    陈永祁, 1986. 地震动持时和结构弹塑性耗能的关系. 地震研究, 9(2): 185—196.

    Chen Y. Q. , 1986. Relationship between earthquake strong motion duration and structural dissipated energy. Journal of Seismological Research, 9(2): 185—186. (in Chinese)
    程光煜, 叶列平, 2007 a. 弹塑性SDOF系统累积滞回耗能谱. 工程抗震与结构加固, 29(2): 1—7

    Cheng G. Y. , Ye L. P. , 2007 a. Cumulative hysteretic energy spectra of SDOF systems. Earthquake Resistant Engineering and Retrofitting, 29(2): 1—7. (in Chinese)
    程光煜, 叶列平, 2007 b. 弹塑性MDOF系统地震输入能量研究. 工程抗震与加固改造, 29(6): 29—35

    Cheng G. Y. , Ye L. P. , 2007 b. Earthquake energy input of inelastic MDOF systems. Earthquake Resistant Engineering and Retrofitting, 29(6): 29—35. (in Chinese)
    程光煜, 叶列平, 2008. 弹塑性SDOF系统的地震输入能量谱. 工程力学, 25(2): 28—39

    Cheng G. Y. , Ye L. P. , 2008. Earthquake input energy sprctrum for inelastic SDOF systems. Engineering Mechanics, 25(2): 28—39. (in Chinese)
    傅剑平, 王敏, 白绍良, 2005. 对用于钢筋混凝土结构的Park—Ang双参数破坏准则的识别和修正. 地震工程与工程振动, 25(5): 73—79

    Fu J. P. , Wang M. , Bai S. L. , 2005. Identification and modification of the park—Ang criterion for failure of RC structures. Earthquake Engineering and Engineering Vibration, 25(5): 73—79. (in Chinese)
    韩建平, 孙小云, 周颖, 2016. 基于规范谱拟合的人工地震动持时对RC框架结构抗倒塌能力影响. 建筑结构学报, 37(7): 121—126

    Han J. P. , Sun X. Y. , Zhou Y. , 2016. Effect of code-spectrum-matched artificial ground motion duration on collapse resistance capacity of RC frame. Journal of Building Structures, 37(7): 121—126. (in Chinese)
    胡进军, 2009. 近断层地震动方向性效应及超剪切破裂研究. 哈尔滨: 中国地震局工程力学研究所.

    Hu J. J., 2009. Directivity effect of near-fault ground motion and super-shear rupture. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    胡聿贤, 2006. 地震工程学. 北京: 地震出版社.

    Hu Y. X., 2006. Earthquake engineering. Beijing: Seismological Press. (in Chinese)
    霍俊荣, 胡聿贤, 冯启民, 1991. 地面运动时程强度包络函数的研究. 地震工程与工程振动, 11(1): 1—12

    Huo J. R. , Hu Y. X. , Feng Q. M. , 1991. Study on envelope function of acceleration time history. Earthquake Engineering and Engineering Vibration, 11(1): 1—12. (in Chinese)
    冀昆, 2018. 我国不同抗震设防需求下的强震动记录选取研究. 哈尔滨: 中国地震局工程力学研究所.

    Ji K., 2018. Strong ground motion selection for multiple levels of seismic fortification demand in China. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    李沣泰, 2013. 高层建筑框架—核心筒混合结构地震能量反应及损伤评估. 西安: 西安建筑科技大学.

    Li F. T., 2013. Seismic energy response and behavior assessment of frame-corewall hybrid structures. Xi'an: Xi'an University of Architecture and Technology. (in Chinese)
    李仕栋, 2004. 地震波时频反应谱分析方法的初步研究. 上海: 同济大学.
    刘纲, 2002. 抗震框架结构能量反应的初步分析. 重庆: 重庆大学.

    Liu G., 2002. Analysis of energy response in aseismatic frame structures. Chongqing: Chongqing University. (in Chinese)
    刘浪, 2010. 汶川地震地震动衰减特性分析. 哈尔滨: 中国地震局工程力学研究所.

    Liu L., 2010. Analysis about characteristics of ground motion attenuation of Wenchuan earthquake. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    刘浪, 李小军, 彭小波, 2011. 汶川地震中强震动相对持时的空间变化特性研究. 地震学报, 33(6): 809—816

    Liu L. , Li X. J. , Peng X. B. , 2011. Study on relative duration of strong motions during the great Wenchuan earthquake. Acta Seismologica Sinica, 33(6): 809—816. (in Chinese)
    刘哲锋, 沈蒲生, 2006. 地震动输入能量谱的研究. 工程抗震与加固改造, 28(4): 1—5 doi: 10.3969/j.issn.1002-8412.2006.04.001

    Liu Z. F. , Shen P. S. , 2006. Study on input energy spectra of earthquake strong motion. Earthquake Resistant Engineering and Retrofitting, 28(4): 1—5. (in Chinese) doi: 10.3969/j.issn.1002-8412.2006.04.001
    卢书楠, 翟长海, 谢礼立, 2013. 汶川地震中强震持时的特征研究. 地震工程与工程振动, 33(2): 1—7

    Lu S. N. , Zhai C. H. , Xie L. L. , 2013. Characteristics of duration of ground motion during the Wenchuan earthquake. Journal of Earthquake Engineering and Engineering Vibration, 33(2): 1—7. (in Chinese)
    马小燕, 2010. 长持时与多波包地震动作用下的结构反应. 哈尔滨: 中国地震局工程力学研究所.

    Ma X. Y., 2010. Structure dynamic responses under long-duration and multi-wave packets ground motion. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    缪志伟, 2009. 钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究. 北京: 清华大学.

    Miao Z. W., 2009. Study on energy-based seismic design methodology for reinforced concrete frame-shear wall structures. Beijing: Tsinghua University. (in Chinese)
    缪志伟, 马千里, 叶列平, 2013. 钢筋混凝土框架结构基于能量抗震设计方法研究. 建筑结构学报, 34(12): 1—10

    Miao Z. W. , Ma Q. L. , Ye L. P. , 2013. Study on energy-based seismic design method of reinforced concrete frame structures. Journal of Building Structures, 34(12): 1—10. (in Chinese)
    牛荻涛, 任利杰, 1996. 改进的钢筋混凝土结构双参数地震破坏模型. 地震工程与工程振动, 16(4): 44—54

    Niu D. T. , Ren L. J. , 1996. A modified seismic damage model with double variables for reinforced concrete structures. Earthquake Engineering and Engineering Vibration, 16(4): 44—54. (in Chinese)
    欧进萍, 牛荻涛, 王光远, 1991. 非线性抗震钢结构的模糊动力可靠性分析与设计. 哈尔滨建筑工程学院学报, 24(1): 9—20

    Ou J. P. , Niu D. T. , Wang G. Y. , 1991. Fuzzy dynamical reliability analysis and design of nonlinear aseismic steel structures. Journal of Harbin University of Civil Engineering and Architecture, 24(1): 9—20. (in Chinese)
    钱向东, 崔赛飞, 程玉瑶, 2015. 由地震危险性分析估计场地地震动持时. 三峡大学学报(自然科学版), 37(3): 1—4

    Qian X. D. , Cui S. F. , Cheng Y. Y. , 2015. Prediction of ground motion duration based on seismic hazard analysis. Journal of China Three Gorges University (Natural Sciences), 37(3): 1—4. (in Chinese)
    曲国岩, 俞瑞芳, 2018. 基于时-频包线的非平稳地震动合成及其对结构非线性响应的影响. 振动工程学报, 31(2): 198—208

    Qu G. Y. , Yu R. F. , 2018. Simulation method of earthquake ground motion based on frequency-dependent amplitude envelope function and its influence on the structural nonlinear responses. Journal of Vibration Engineering, 31(2): 198—208. (in Chinese)
    任叶飞, 温瑞智, 周宝峰等, 2014.2013年4月20日四川芦山地震强地面运动三要素特征分析. 地球物理学报, 57(6): 1836—1846

    Ren Y. F. , Wen R. Z. , Zhou B. F. , et al. , 2013. The characteristics of strong ground motion of Lushan earthquake on April 20, 2013. Chinese Journal of Geophysics, 57(6): 1836—1846. (in Chinese)
    盛明强, 罗奇峰, 刘建成等, 2007. 考虑场地类别与强震持时的滞回耗能谱的特征分析. 地震研究, 30(2): 169—174

    Sheng M. Q. , Luo Q. F. , Liu J. C. , et al. , 2007. Hysteretic energy spectra considering site type and duration of strong ground motion. Journal of Seismological Research, 30(2): 169—174. (in Chinese)
    史庆轩, 熊仲明, 李菊芳, 2005. 框架结构滞回耗能在结构层间分配的计算分析. 西安建筑科技大学学报(自然科学版), 37(2): 174—178, 188 doi: 10.3969/j.issn.1006-7930.2005.02.006

    Shi Q. X. , Xiong Z. M. , Li J. F. , 2005. Calculation analysis of the story distribution of hysteretic energy for frame structures. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 37(2): 174—178, 188. (in Chinese) doi: 10.3969/j.issn.1006-7930.2005.02.006
    宋雅桐, 朱继澄, 1983. 地震动持时对多层结构反应的影响. 地震工程与工程振动, 3(4): 49—59

    Song Y. T. , Zhu J. C. , 1983. Effect of ground motion duration on earthquake response of multistory structures. Earthquake Engineering and Engineering Vibration, 3(4): 49—59. (in Chinese)
    孙佳明, 赵艳, 王文仲等, 2009. 震中矩对竖直向地震动持时的影响. 佳木斯大学学报(自然科学版), 27(4): 493—494

    Sun J. M. , Zhao Y. , Wang W. Z. , et al. , 2009. Influence of epicenter distance on vertical earthquake ground motion duration. Journal of Jiamusi University (Natural Science Edition), 27(4): 493—494. (in Chinese)
    孙小云, 2017. 地震动持时特性及其对RC框架结构非线性地震响应影响研究. 兰州: 兰州理工大学.

    Sun X. Y. , 2017. Investigation on duration characteristics of ground motion and its effect on nonlinear seismic response of RC frame structures. Lanzhou: Lanzhou University of Technology. (in Chinese)
    陶能付, 章在墉, 1994. 以概率为基础的地震动持时小区划. 同济大学学报, 22(2): 230—235.

    Tao N. F. , Zhang Z. Y. , 1994. Microzonation of ground motion duration based on probabilistic method. Journal of Tongji University, 22(2): 230—255. (in Chinese)
    陶能付, 章在墉, 1996. 地震动持时在抗震设计中的应用. 同济大学学报(自然科学版), 24(4): 374—379

    Tao N. F. , Zhang Z. Y. , 1996. Application of ground motion duration to seismic design. Journal of Tongji University (Natural Science), 24(4): 374—379. (in Chinese)
    田文通, 董建华, 杨博等, 2021. 云南漾濞6.4级地震强地面运动三要素基本特征分析. 地震工程学报, 43(4): 760—766

    Tian W. T. , Dong J. H. , Yang B. , et al. , 2021. Basic characteristics of the three elements of strong ground motion of the Yangbi M6.4 earthquake in Yunnan Province. China Earthquake Engineering Journal, 43(4): 760—766. (in Chinese)
    王栋, 2010. 近断层地震动的上/下盘效应研究. 哈尔滨: 中国地震局工程力学研究所.

    Wang D., 2010. The hanging wall/footwall effects of near-fault ground motions. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    王德才, 2010. 基于能量分析的地震动输入选择及能量谱研究. 合肥: 合肥工业大学.

    Wang D. C., 2010. Research on energy spectrum and the selection of earthquake accelerograms for dynamic analysis based on energy. Hefei: Hefei University of Technology. (in Chinese)
    王德才, 叶献国, 2010. 基于能量分析强震持时指标的选择. 工程抗震与加固改造, 32(6): 1—8 doi: 10.3969/j.issn.1002-8412.2010.06.001

    Wang D. C. , Ye X. G. , 2010. Index selection of strong motion duration for energy analysis. Earthquake Resistant Engineering and Retrofitting, 32(6): 1—8. (in Chinese) doi: 10.3969/j.issn.1002-8412.2010.06.001
    王放, 干洪, 杨少华, 2018. 高层框架剪力墙结构的滞回耗能分布. 安徽建筑大学学报, 26(2): 1—5 doi: 10.11921/j.issn.2095-8382.20180201

    Wang F. , Gan H. , Yang S. H. , 2018. The hysteresis energy distribution of shear wall structure of high-level frame. Journal of Anhui Jianzhu University, 26(2): 1—5. (in Chinese) doi: 10.11921/j.issn.2095-8382.20180201
    王亚勇, 李虹, 1986. 考虑场地特征的强震地面运动参数的统计分析. 地震工程与工程振动, 6(3): 67—77

    Wang Y. Y. , Li H. , 1986. Site dependent attenuation statistics of strong ground motion parameters. Earthquake Engineering and Engineering Vibration, 6(3): 67—77. (in Chinese)
    王倩, 2015. 水平地震动持时的特征研究. 哈尔滨: 中国地震局工程力学研究所.

    Wang Q., 2015. Study on characteristics of the duration of horizontal components of ground motions. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    王中阳, 车佳玲, 张尚荣等, 2018. 基于能量方法设计的RC框架结构易损性分析. 震灾防御技术, 13(3): 524—533

    Wang Z. Y. , Che J. L. , Zhang S. R. , et al. , 2018. Seismic fragility analysis of RC frame structure based on energy balance. Technology for Earthquake Disaster Prevention, 13(3): 524—533. (in Chinese)
    肖明葵, 刘纲, 白绍良等, 2002. 抗震结构的滞回耗能谱. 世界地震工程, 18(3): 110 —115.

    Xiao M. K. , Liu G. , Bai S. L. , et al. , 2002. The hysteretic energy spectra of seismic structures. World Earthquake Engineering, 18(3): 110—115. (in Chinese)
    肖明葵, 刘纲, 白绍良, 2006. 基于能量反应的地震动输入选择方法讨论. 世界地震工程, 22(3): 89—94 doi: 10.3969/j.issn.1007-6069.2006.03.015

    Xiao M. K. , Liu G. , Bai S. L. , 2006. Some methods of selecting earthquake wave based on energy responses. World Earthquake Engineering, 22(3): 89—94. (in Chinese) doi: 10.3969/j.issn.1007-6069.2006.03.015
    谢礼立, 张晓志, 1988. 地震动记录持时与工程持时. 地震工程与工程振动, 8(1): 31—38

    Xie L. L. , Zhang X. Z. , 1988. Accelerogram-based duration and engineering duration of ground motion. Earthquake Engineering and Engineering Vibration, 8(1): 31—38. (in Chinese)
    许成顺, 豆鹏飞, 高畄成等, 2019. 地震动持时压缩比对可液化地基地震反应影响的振动台试验. 岩土力学, 40(1): 147—155

    Xu C. S. , Dou P. F. , Gao L. C. , et al. , 2019. Shaking table test on effects of ground motion duration compression ratio on seismic response of liquefied foundation. Rock and Soil Mechanics, 40(1): 147—155. (in Chinese)
    徐龙河, 杨冬玲, 李忠献, 2011. 基于应变和比能双控的钢结构损伤模型. 振动与冲击, 30(7): 218—222

    Xu L. H. , Yang D. L. , Li Z. X. , 2011. Strain and energy ratio-based damage model of a steel structure. Journal of Vibration and Shock, 30(7): 218—222. (in Chinese)
    徐培彬, 温瑞智, 2018. 基于我国强震动数据的地震动持时预测方程. 地震学报, 40(6): 809−819

    Xu P. B. , Wen R. Z. , 2018. The prediction equations for the significant duration of strong motion in Chinese mainland. Acta Seismologica Sinica, 40(6): 809−819. (in Chinese)
    杨伟, 欧进萍, 2008. 结构地震弹塑性反应谱-损伤谱. 地震工程与工程振动, 28(6): 44—53

    Yang W. , Ou J. P. , 2008. Earthquake inelastic response spectra-damage spectra. Journal of Earthquake Engineering and Engineering Vibration, 28(6): 44—53. (in Chinese)
    杨伟, 高峰, 2012. 抗震结构基于最大弹塑性位移耦合作用的滞回耗能谱. 振动工程学报, 25(6): 686—692

    Yang W. , Gao F. , 2012. Hysteretic energy spectra based on coupling effect of maximum elasto-plastic deformation for aseismic structures. Journal of Vibration Engineering, 25(6): 686—692. (in Chinese)
    叶列平, 程光煜, 曲哲等, 2012. 基于能量抗震设计方法研究及其在钢支撑框架结构中的应用. 建筑结构学报, 33(11): 36—45

    Ye L. P. , Cheng G. Y. , Qu Z. , et al. , 2012. Study on energy-based application on steel seismic design method and braced frame structures. Journal of Building Structures, 33(11): 36—45. (in Chinese)
    叶献国, 许政, 常磊, 2011. 钢筋混凝土框架结构耗能分析. 震灾防御技术, 6(4): 448—453 doi: 10.11899/zzfy20110410

    Ye X. G. , Xu Z. , Chang L. , 2011. Analysis of hysteretic energy of RC frame structures. Technology for Earthquake Disaster Prevention, 6(4): 448—453. doi: 10.11899/zzfy20110410
    张美玲, 2014. 地震动强度包络函数相关参数确定. 哈尔滨: 中国地震局工程力学研究所.

    Zhang M. L., 2014. Determination on related parameters for intensity envelope function of ground motion. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    张晓哲, 2000. 结构抗震理论中地震波时-频反应谱分析方法的初步研究. 上海: 同济大学.
    赵凤仙, 2015. 局部地形效应对地震动参数的影响研究. 北京: 北京工业大学.

    Zhao F. X., 2015. The study of local topography effection on ground motion parameters. Beijing: Beijing University of Technology. (in Chinese)
    赵艳, 郭明珠, 季杨等, 2007. 场地条件对地震动持时的影响. 震灾防御技术, 2(4): 417—424 doi: 10.3969/j.issn.1673-5722.2007.04.011

    Zhao Y. , Guo M. Z. , Ji Y. , et al. , 2007. Site conditions’ influence on earthquake ground motion duration. Technology for Earthquake Disaster Prevention, 2(4): 417—424. (in Chinese) doi: 10.3969/j.issn.1673-5722.2007.04.011
    赵艳, 付丽艳, 韩卫等, 2008. 震中矩对水平向能量持时的影响分析. 佳木斯大学学报(自然科学版), 26(5): 630—632, 635

    Zhao Y. , Fu L. Y. , Han W. , et al. , 2008. The influence of epicenter distance to horizontal earthquake ground motion duration. Journal of Jiamusi University (Natural Science Edition), 26(5): 630—632, 635. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Construction Industry Press. (in Chinese)
    钟菊芳, 袁峰, 2019. 震源参数对合成时程持时的影响分析. 防灾减灾工程学报, 39(5): 733—747

    Zhong J. F. , Yuan F. , 2019. Influence of source parameters on the duration of simulated ground motion. Journal of Disaster Prevention and Mitigation Engineering, 39(5): 733—747. (in Chinese)
    Abrahamson N. A. , 1992. Non-stationary spectral matching. Seismological Research Letters, 63(1): 30.
    Anderson J. G., 2004. Quantitative measure of the goodness-of-fit of synthetic seismograms. In: 13 th World Conference on Earthquake Engineering. Vancouver: International Association for Earthquake Engineering.
    ASCE, 2017. ASCE/SEI 7-16 Minimum design loads and associated criteria for buildings and other structures. Reston: American Society of Civil Engineers.
    Bahrampouri M. , Rodriguez-Marek A. , Green R. A. , 2021. Ground motion prediction equations for significant duration using the KiK-net database. Earthquake Spectra, 37(2): 903—920. doi: 10.1177/8755293020970971
    Baker J. W. , Cornell C. A. , 2005. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthquake Engineering & Structural Dynamics, 34(10): 1193—1217.
    Bhanu V. , Chandramohan R. , Sullivan T. J. , 2021. Influence of ground motion duration on the dynamic deformation capacity of reinforced concrete frame structures. Earthquake Spectra, 37(4): 2622—2637. doi: 10.1177/87552930211033879
    Bojorquez E. , Ruiz S. E. , Teran-Gilmore A. , 2008. Reliability-based evaluation of steel structures using energy concepts. Engineering Structures, 30(6): 1745—1759. doi: 10.1016/j.engstruct.2007.11.014
    Bojorquez E. , Reyes-Salazar A. , Terán-Gilmore A. , et al. , 2010. Energy-based damage index for steel structures. Steel and Composite Structures, 10(4): 331—348. doi: 10.12989/scs.2010.10.4.331
    Bommer J. J. , Martínez-Pereira A. , 1999. The effective duration of earthquake strong motion. Journal of Earthquake Engineering, 3(2): 127—172.
    Bommer J. J. , Magenes G. , Hancock J. , et al. , 2004. The influence of strong-motion duration on the seismic response of masonry structures. Bulletin of Earthquake Engineering, 2(1): 1—26. doi: 10.1023/B:BEEE.0000038948.95616.bf
    Bommer J. J. , Stafford P. J. , Alarcon J. E. , 2009. Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bulletin of the Seismological Society of America, 99(6): 3217—3233. doi: 10.1785/0120080298
    Boore D. M. , Thompson E. M. , 2014. Path durations for use in the stochastic-method simulation of groundmotions. Bulletin of the Seismological Society of America, 104(5): 2541—2552. doi: 10.1785/0120140058
    Bradley B. A. , 2010. A generalized conditional intensity measure approach and holistic ground-motion selection. Earthquake Engineering & Structural Dynamics, 39(12): 1321—1342.
    Bradley B. A. , 2012. The seismic demand hazard and importance of the conditioning intensity measure. Earthquake Engineering & Structural Dynamics, 41(11): 1417—1437.
    Bruneau M. , Wilson J. C. , Tremblay R. , 1996. Performance of steel bridges during the 1995 Hyogo-ken Nanbu (Kobe, Japan) earthquake. Canadian Journal of Civil Engineering, 23(3): 678—713. doi: 10.1139/l96-883
    CEN, 2004. EN1998-1: 2004 Eurocode 8: Design of structures for earthquake resistance-Part1: Generl rules, seismic actions and rules for buildings. Brussels: European Commitee for Standardization.
    Chandramohan R. , Baker J. W. , Deierlein G. G. , 2016. Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records. Earthquake Spectra, 32(2): 927—950. doi: 10.1193/122813eqs298mr2
    Fairhurst M. , Bebamzadeh A. , Ventura C. E. , 2019. Effect of ground motion duration on reinforced concrete shear wall buildings. Earthquake Spectra, 35(1): 311—331. doi: 10.1193/101117EQS201M
    Fajfar P. , Vidic T. , Fischinger M. , 1989. Seismic demand in medium- and long-period structures. Earthquake Engineering & Structural Dynamics, 18(8): 1133—1144.
    Foschaar J. C., Baker J. W., Deierlein G. G., 2012. Preliminary assessment of ground motion duration effects on structural collapse. In: 15 th World Conference on Earthquake Engineering. Lisbon: WCEE.
    Hammad A. , Moustafa M. A. , 2020. Modeling sensitivity analysis of special concentrically braced frames under short and long duration ground motions. Soil Dynamics and Earthquake Engineering, 128: 105867. doi: 10.1016/j.soildyn.2019.105867
    Han J. P. , Sun X. Y. , Zhou Y. , 2017. Duration effect of spectrally matched ground motion records on collapse resistance capacity evaluation of RC frame structures. The Structural Design of Tall and Special Buildings, 26(18): e1397. doi: 10.1002/tal.1397
    Hancock J. , Watson-Lamprey J. , Abrahamson N. A. , et al. , 2006. An improved method of matching response spectra of recorded earthquake ground motion using wavelets. Journal of Earthquake Engineering, 10(S1): 67—89.
    Hancock J. , Bommer J. J. , 2007. Using spectral matched records to explore the influence of strong-motion duration on inelastic structural response. Soil Dynamics and Earthquake Engineering, 27(4): 291—299. doi: 10.1016/j.soildyn.2006.09.004
    Hwang S. H. , Mangalathu S. , Jeon J. S. , 2021. Quantifying the effects of long-duration earthquake ground motions on the financial losses of steel moment resisting frame buildings of varying design risk category. Earthquake Engineering & Structural Dynamics, 50(5): 1451—1468.
    Ibarra L. F. , Medina R. A. , Krawinkler H. , 2005. Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics, 34(12): 1489—1511.
    Iervolino I. , Manfredi G. , Cosenza E. , 2006. Ground motion duration effects on nonlinear seismic response. Earthquake Engineering & Structural Dynamics, 35(1): 21—38.
    Jaimes M. A. , García-Soto A. D. , 2021. Ground-motion duration prediction model from recorded Mexican interplate and intermediate-depth intraslab earthquakes. Bulletin of the Seismological Society of America, 111(1): 258—273. doi: 10.1785/0120200196
    Jayaram N. , Lin T. , Baker J. W. , 2011. A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. Earthquake Spectra, 27(3): 797—815. doi: 10.1193/1.3608002
    Ji K. , Wen R. Z. , Zong C. C. , et al. , 2021. Genetic algorithm-based ground motion selection method matching target distribution of generalized conditional intensity measures. Earthquake Engineering & Structural Dynamics, 50(6): 1497—1516.
    Kawashima K. , Aizawa K. , 1989. Bracketed and normalized durations of earthquake ground acceleration. Earthquake Engineering & Structural Dynamics, 18(7): 1041—1051.
    Kempton J. J. , Stewart J. P. , 2006. Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. Earthquake Spectra, 22(4): 985—1013. doi: 10.1193/1.2358175
    Kitayama S. , Constantinou M. C. , 2021. Implications of strong earthquake ground motion duration on the response and testing of seismic isolation systems. Earthquake Engineering & Structural Dynamics, 50(2): 290—308.
    Kwong N. S. , Chopra A. K. , 2017. A generalized conditional mean spectrum and its application for intensity-based assessments of seismic demands. Earthquake Spectra, 33(1): 123—143. doi: 10.1193/040416eqs050m
    Lee V. W. , Trifunac M. D. , 1985. Torsional accelerograms. International Journal of Soil Dynamics and Earthquake Engineering, 4(3): 132—139. doi: 10.1016/0261-7277(85)90007-5
    Lee V. W. , 2002. Empirical scaling of strong earthquake ground motion-part II: Duration of strong motion. ISET Journal of Earthquake Technology, 39(4): 255—271.
    Liddell D., Ingham J. M., Davidson B. J., 2000. Influence of loading history on ultimate displacement of concrete structures. New Zealand: Department of Civil and Resource Engineering, University of Auckland.
    Malhotra P. K. , Eeri M, 2003. Strong-motion records for site-specific analysis. Earthquake Spectra, 19(3): 557—578. doi: 10.1193/1.1598439
    Mohammed M. S., Sanders D., Buckle I., 2015. Shake table tests of reinforced concrete bridge columns under long duration ground motions. In: 6 th International Conference on Advances in Experimental Structural Engineering. Urbana-Champaign, USA: University of Illinois.
    Molazadeh M. , Saffari H. , 2018. The effects of ground motion duration and pinching-degrading behavior on seismic response of SDOF systems. Soil Dynamics and Earthquake Engineering, 114: 333—347. doi: 10.1016/j.soildyn.2018.06.032
    NZ-NZS, 2004. NZS 1170.5: 2004 Structural design actions-part 5: earthquake actions - New Zealand. Wellington: Standards New Zealand.
    Ou Y. C. , Song J. W. , Wang P. H. , et al. , 2014. Ground motion duration effects on hysteretic behavior of reinforced concrete bridge columns. Journal of Structural Engineering, 140(3): 04013065. doi: 10.1061/(ASCE)ST.1943-541X.0000856
    Pan Y. X. , Ventura C. E. , Finn W. D. L. , 2018. Effects of ground motion duration on the seismic performance and collapse rate of light-frame wood houses. Journal of Structural Engineering, 144(8): 04018112. doi: 10.1061/(ASCE)ST.1943-541X.0002104
    Papazachos B. C., Papaooannou C. A., Margaris V. N., et al., 1992. Seismic hazard assessment in Greece based on strong motion duration. In: Earthquake Engineering, Tenth World Conference. Rotterdam, 425—430.
    Park Y. J. , Ang A. H. S. , Wen Y. K. , 1985. Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering, 111(4): 740—757. doi: 10.1061/(ASCE)0733-9445(1985)111:4(740)
    Raghunandan M. , Liel A. B. , 2013. Effect of ground motion duration on earthquake-induced structural collapse. Structural Safety, 41: 119—133. doi: 10.1016/j.strusafe.2012.12.002
    Ruiz-Garcia J. , 2010. On the influence of strong-ground motion duration on residual displacement demands. Earthquakes and Structures, 1(4): 327—344. doi: 10.12989/eas.2010.1.4.327
    Samanta A., Megawati K., Pan T. C., 2012. Duration-dependent inelastic response spectra and effect of ground motion duration. In: The 15 th World Conference on Earthquake Engineering. Lisbon: WCEE.
    Shi Y. , Stafford P. J. , 2018. Markov chain Monte Carlo ground-motion selection algorithms for conditional intensity measure targets. Earthquake Engineering & Structural Dynamics, 47(12): 2468—2489.
    Somerville P. G. , Smith N. F. , Graves R. W. , et al. , 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1): 199—222. doi: 10.1785/gssrl.68.1.199
    Tarbali K. , Bradley B. A. , 2015. Ground motion selection for scenario ruptures using the generalised conditiona intensity measure (GCIM) method. Earthquake Engineering & Structural Dynamics, 44(10): 1601—1621.
    Tarbali K. , Bradley B. A. , 2016. The effect of causal parameter bounds in PSHA-based ground motion selection. Earthquake Engineering & Structural Dynamics, 45(9): 1515—1535.
    Trifunac M. D. , Brady A. G. , 1975. A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65(3): 581—626.
    Uang C. M. , Bertero V. V. , 1990. Evaluation of seismic energy in structures. Earthquake Engineering & Structural Dynamics, 19(1): 77—90.
    Wang G. , 2011. A ground motion selection and modification method capturing response spectrum characteristics and variability of scenario earthquakes. Soil Dynamics and Earthquake Engineering, 31(4): 611—625. doi: 10.1016/j.soildyn.2010.11.007
    Wong H. L., 1978. Synthesizing realistic ground motion accelerograms. Los Angeles: University of Southern California, Department of Civil Engineering.
  • 加载中
表(1)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  81
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回