• ISSN 1673-5722
  • CN 11-5429/P

基于特征分类排序的典型海底地震动记录研究

田浩 胡进军 谭景阳 崔鑫 石昊

田浩,胡进军,谭景阳,崔鑫,石昊,2022. 基于特征分类排序的典型海底地震动记录研究. 震灾防御技术,17(2):360−371. doi:10.11899/zzfy20220216. doi: 10.11899/zzfy20220216
引用本文: 田浩,胡进军,谭景阳,崔鑫,石昊,2022. 基于特征分类排序的典型海底地震动记录研究. 震灾防御技术,17(2):360−371. doi:10.11899/zzfy20220216. doi: 10.11899/zzfy20220216
Tian Hao, Hu Jinjun, Tan Jingyang, Cui Xin, Shi Hao. Recommendation of Ranked Typical Seafloor Ground Motions Records According to Characteristic Classification[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 360-371. doi: 10.11899/zzfy20220216
Citation: Tian Hao, Hu Jinjun, Tan Jingyang, Cui Xin, Shi Hao. Recommendation of Ranked Typical Seafloor Ground Motions Records According to Characteristic Classification[J]. Technology for Earthquake Disaster Prevention, 2022, 17(2): 360-371. doi: 10.11899/zzfy20220216

基于特征分类排序的典型海底地震动记录研究

doi: 10.11899/zzfy20220216
基金项目: 国家重点研发计划(2021YFC3100700);国家自然科学基金项目(52078470、U1939210)
详细信息
    作者简介:

    田浩,男,生于1996年。硕士。主要从事地震动强度指标研究。E-mail:tianhaotj@qq.com

    通讯作者:

    胡进军,男,生于1978年。研究员。主要从事地震动模型和强度指标研究。E-mail:hujinjun@iem.ac.cn

  • 2 https://www.kyoshin.bosai.go.jp/

Recommendation of Ranked Typical Seafloor Ground Motions Records According to Characteristic Classification

  • 摘要: 面向海域工程抗震设计及评估对海底地震动的需求,基于日本相模湾海域K-NET的ETMC海底强震动记录,根据震级、震中距选取面向工程输入的949组地震动记录数据库。在考虑震源类型差异的基础上,对地震动峰值、持时、频谱等参数进行分析,通过反应谱、Arias烈度等指标描述典型海底地震动特征。根据峰值加速度、显著持时等强度指标对海底地震动记录进行排序,给出基于不同地震动特征分类下的典型地震动记录。推荐的海底地震动可为考虑不同结构需求参数的典型海域工程结构时程分析提供输入地震动。
    1)  2 https://www.kyoshin.bosai.go.jp/
  • 图  1  ETMC系统海底台站分布

    Figure  1.  Distribution of seafloor stations of ETMC system

    图  2  海底地震记录矩震级与震中距分布

    Figure  2.  Distribution of moment magnitude and epicentral distance of seafloor ground motion records

    图  3  典型高PGA地震动加速度时程曲线

    Figure  3.  Typical high PGA ground motion acceleration time history curve

    图  4  典型高PGA地震动加速度反应谱

    Figure  4.  Typical high PGA ground motion acceleration response spectrum

    图  5  典型高PGV地震动速度时程曲线

    Figure  5.  Typical high PGV ground motion acceleration time history curve

    图  6  典型高PGV地震动速度反应谱

    Figure  6.  Typical high PGV ground motion velocity response spectrum

    图  7  典型高PGD地震动位移时程曲线

    Figure  7.  Typical high PGD ground motion acceleration time history curve

    图  8  典型高PGD地震动位移反应谱

    Figure  8.  Typical high PGD ground motion velocity response spectrum

    图  9  典型长持时地震动加速度时程曲线

    Figure  9.  Acceleration time history of typical long duration ground motion curve

    图  10  典型长持时地震动归一化Arias烈度时程曲线

    Figure  10.  Normalized Arias intensity time history of typical long duration ground motion

    图  11  KNG2010604210250.EW加速度时程及Arias烈度时程曲线

    Figure  11.  Acceleration and Arias intensity time history curve of KNG2010604210250.EW

    图  12  KNG2010604210250.EW加速度反应谱

    Figure  12.  Acceleration response spectrum of KNG2010604210250.EW

    图  13  典型低频地震动加速度时程曲线

    Figure  13.  Acceleration time history of typical low frequency ground motion

    图  14  典型低频地震动傅里叶谱及其对比

    Figure  14.  Fourier spectrum of typical low frequency ground motion and its curve of comparison

    图  15  典型近场高频地震动加速度时程曲线

    Figure  15.  Acceleration time history of typical high frequency ground motion

    图  16  典型近场高频地震动傅里叶谱

    Figure  16.  Fourier spectrum of typical high frequency ground motion and its curve of comparison

    表  1  基于PGA排序的海底地震动记录

    Table  1.   Recommended seafloor ground motion records based on PGA ranking

    记录编号震级Mw(类型)震中距/kmPGA/Gal 记录编号震级Mw(类型)震中距/kmPGA/Gal
    KNG2050605021824.EW5.1(UM)8.8418.69KNG2030201181646.EW4.0(UM)6.1208.90
    KNG2061103111446.EW9.0(IF)456.4367.54KNG2061103111446.NS9.0(IF)456.4208.77
    KNG2061912140324.EW4.3(SC)9.9293.44KNG2060710010221.EW4.9(IF)27.6203.19
    KNG2030201181646.NS4.0(UM)6.1281.14KNG2061103111515.EW7.7(IF)204.5202.39
    KNG2050605021824.NS5.1(UM)8.8252.08KNG2030102251405.NS4.3(SC)5.8199.35
    KNG2050604210250.EW5.8(UM)20.7251.69KNG2010007302125.NS6.4(UM)84.8192.36
    KNG2060605021824.EW5.1(SL)20.4233.15KNG2030605021824.EW5.1(UM)31.5175.72
    KNG2020610140638.EW5.1(SL)45.7229.21KNG2051207031131.NS5.2(SL)41.5170.81
    KNG2010102251405.NS4.3(SC)35.8228.71KNG2051103111446.NS9.0(IF)466.8157.70
    KNG2011402110414.NS5.3(SL)50.0214.42KNG2051207031131.EW5.2(SL)41.5155.69
    下载: 导出CSV

    表  2  基于PGV排序的海底地震动记录

    Table  2.   Recommended seafloor ground motion records based on PGV ranking

    记录编号震级Mw(类型)震中距/kmPGV/cm·s−1记录编号震级Mw(类型)震中距/kmPGV/cm·s−1
    KNG2061103111446.EW9.0(IF)456.467.94KNG2010102251405.NS4.3(SC)35.818.07
    KNG2061103111515.EW7.7(IF)204.546.76KNG2051103111446.NS9.0(IF)466.817.42
    KNG2061103111446.NS9.0(IF)456.439.51KNG2011103111446.EW9.0(IF)470.316.72
    KNG2010007302125.NS6.4(UM)84.825.23KNG2050605021824.NS5.1(UM)8.816.70
    KNG2061103111515.NS7.7(IF)204.523.45KNG2041103111446.NS9.0(IF)462.216.45
    KNG2050605021824.EW5.1(UM)8.823.42KNG2021103111446.EW9.0(IF)461.113.92
    KNG2050604210250.EW5.8(UM)20.720.85KNG2020610140638.EW5.1(SL)45.713.84
    KNG2051103111446.EW9.0(IF)466.820.74KNG2011201011428.NS7.0(SL)373.413.53
    KNG2011103111446.NS9.0(IF)470.318.65KNG2051103111515.EW7.7(IF)211.513.25
    KNG2041103111446.EW9.0(IF)462.218.16KNG2050604210250.NS5.8(UM)20.713.10
    下载: 导出CSV

    表  3  基于PGD排序的海底地震动记录

    Table  3.   Recommended seafloor ground motion records based on PGD ranking

    记录编号震级Mw(类型)震中距/kmPGD
    /cm
    记录编号震级Mw(类型)震中距
    /km
    PGD
    /cm
    KNG2061103111446.EW9.0(IF)456.423.30KNG2041103111446.NS9.0(IF)462.28.94
    KNG2061103111446.NS9.0(IF)456.419.02KNG2031103111446.NS9.0(IF)466.48.42
    KNG2061103111515.EW7.7(IF)204.515.24KNG2031103111515.NS7.7(IF)206.87.76
    KNG2011201011428.NS7.0(SL)373.411.51KNG2061103111515.NS7.7(IF)204.57.71
    KNG2051103111515.NS7.7(IF)211.510.59KNG2051103111515.EW7.7(IF)211.57.69
    KNG2011103111446.NS9.0(IF)470.310.44KNG2011103111446.EW9.0(IF)470.37.01
    KNG2051103111446.EW9.0(IF)466.810.17KNG2011103111515.EW7.7(IF)207.75.91
    KNG2010102251405.NS4.3(SC)35.89.81KNG2010007302125.NS6.4(UM)84.85.78
    KNG2041103111446.EW9.0(IF)462.29.68KNG2021103111446.NS9.0(IF)461.15.65
    KNG2051103111446.NS9.0(IF)466.89.42KNG2021103111446.EW9.0(IF)461.15.57
    下载: 导出CSV

    表  4  基于Ds5-95排序的海底地震动记录

    Table  4.   Recommended seafloor ground motion records based on Ds5-95 ranking

    记录编号震级Mw(类型)震中距
    /km
    Ds5-95
    /s
    记录编号震级Mw(类型)震中距
    /km
    Ds5-95
    /s
    KNG2010806140843.NS7.2(UM)499.3216.85KNG2010805080145.EW7.0(SC)237.2184.93
    KNG2011611220559.EW7.4(UM)341.6213.22KNG2051611220559.NS7.4(UM)331.9181.92
    KNG2010806140843.EW7.2(UM)499.3211.39KNG2051407120422.NS7.0(SC)350.8179.35
    KNG2011407120422.EW7.0(SC)348.2206.63KNG2050806140843.EW7.2(UM)471.8176.93
    KNG2011611220559.NS7.4(UM)341.6204.11KNG2031611220559.EW7.4(UM)333.9175.55
    KNG2011407120422.NS7.0(SC)348.2200.47KNG2050806140843.NS7.2(UM)471.8173.11
    KNG2031611220559.NS7.4(UM)333.9193.19KNG2010805080145.NS7.0(SL)237.2173.04
    KNG2051611220559.EW7.4(UM)331.9188.61KNG2021611220559.NS7.4(UM)330.7169.04
    KNG2021611220559.EW7.4(UM)330.7188.16KNG2011104111716.EW7.0(UM)269.4166.74
    KNG2041611220559.EW7.4(UM)328.6185.29KNG2011107100957.NS7.3(SC)499.2163.67
    下载: 导出CSV

    表  5  基于Ds5-75/Ds5-95排序的海底地震动记录

    Table  5.   Recommended seafloor ground motion records based on Ds5-75/Ds5-95 ranking

    记录编号震级Mw(类型)震中距/kmDs5-75/Ds5-95记录编号震级Mw(类型)震中距/kmDs5-75/Ds5-95
    KNG2050605021824.NS5.1(UM)8.80.049KNG2030710010221.EW4.9(IF)67.40.098
    KNG2010604210320.EW4.5(UM)76.90.052KNG2050605021824.EW5.1(UM)8.80.104
    KNG2030707241138.NS4.4(IF)76.70.056KNG2010604212317.NS4.5(UM)76.00.107
    KNG2010604212317.EW4.5(UM)76.00.062KNG2010807230416.EW4.4(UM)28.50.108
    KNG2010102251405.NS4.3(SC)35.80.075KNG2031510251715.EW4.3(UM)100.60.115
    KNG2050102251405.NS4.3(SC)24.50.078KNG2012008042021.NS4.6(SC)37.30.122
    KNG2050305120057.EW5.2(SC)119.20.088KNG2010007302125.NS6.4(UM)84.80.123
    KNG2010604210250.EW5.8(UM)76.40.088KNG2030710010221.NS4.9(IF)67.40.124
    KNG2030006290115.EW5.1(UM)80.20.090KNG2030201181646.EW4.0(UM)6.10.125
    KNG2061912140324.EW4.3(SC)9.90.097KNG2050305120057.NS5.2(SC)119.20.127
    下载: 导出CSV

    表  6  基于低频地震动识别参数βl排序的海底地震动记录(从大到小)

    Table  6.   Recommended seafloor ground motion records based on defining parameters(βl) of low frequency (from large to small)

    记录编号震级Mw(类型)震中距/kmβl记录编号震级Mw(类型)震中距/kmβl
    KNG2050806140843.NS7.2(UM)471.80.81KNG2041103111515.NS7.7(IF)236.60.56
    KNG2041407120422.EW7.0(SC)344.60.71KNG2041611220559.NS7.4(UM)348.20.55
    KNG2040806140843.EW7.2(UM)473.40.68KNG2050806140843.EW7.2(UM)423.20.55
    KNG2041611220559.EW7.4(UM)328.60.66KNG2041407120422.NS7.0(SC)456.40.55
    KNG2041103111515.EW7.7(IF)204.40.63KNG2031611220559.NS7.4(UM)340.40.54
    KNG2031103111515.NS7.7(IF)206.80.61KNG2051611220559.NS7.4(UM)350.80.50
    KNG2051103111515.NS7.7(IF)211.50.60KNG2010806140843.EW7.2(UM)429.30.49
    KNG2020806140843.NS7.2(UM)484.90.59KNG2020806140843.EW7.2(UM)344.60.49
    KNG2051611220559.EW7.4(UM)331.90.58KNG2040806140843.NS7.2(UM)427.10.49
    KNG2030806140843.EW7.2(UM)482.20.57KNG2041103111446.NS9.0(IF)462.20.48
    下载: 导出CSV

    表  7  基于低频地震动识别参数βl排序的海底地震动记录(从小到大)

    Table  7.   Recommended seafloor ground motion records based on defining parameters(βl) of low frequency (from small to large)

    记录编号震级Mw(类型)震中距/kmβl记录编号震级Mw(类型)震中距/kmβl
    KNG2021811141309.EW4.3(SC)4.00.004KNG2061912140324.NS4.3(SC)9.90.005
    KNG2021811141309.NS4.3(SC)4.00.003KNG2061912140324.EW4.3(SC)9.90.004
    KNG2051405050518.NS6.0(SL)5.50.032KNG2051912140324.NS4.3(SC)10.20.004
    KNG2051405050518.EW6.0(SL)5.50.017KNG2051912140324.EW4.3(SC)10.20.003
    KNG2030102251405.EW4.3(SC)5.80.004KNG2041405050518.NS6.0(SL)10.60.048
    KNG2030102251405.NS4.3(SC)5.80.003KNG2041405050518.EW6.0(SL)10.60.021
    KNG2030201181646.EW4.0(UM)6.10.005KNG2040102251405.EW4.3(SL)13.80.005
    KNG2030201181646.NS4.0(UM)6.10.002KNG2040102251405.NS4.3(SL)13.80.005
    KNG2050605021824.NS5.1(UM)8.80.009KNG2011812041506.EW4.5(SL)14.40.005
    KNG2050605021824.EW5.1(UM)8.80.008KNG2011812041506.NS4.5(SL)14.40.003
    下载: 导出CSV
  • [1] 陈宝魁, 李宏男, 王东升等, 2014. 海底地震动的等延性强度折减系数谱. 地震工程与工程振动, 34(2): 1—11

    Chen B. K. , Li H. N. , Wang D. S. , et al. , 2014. Strength reduction factor spectra with constant ductility for offshore ground motions. Earthquake Engineering and Engineering Dynamics, 34(2): 1—11. (in Chinese)
    [2] 郝敏, 谢礼立, 徐龙军, 2005. 关于地震烈度物理标准研究的若干思考. 地震学报, 27(2): 230—234 doi: 10.3321/j.issn:0253-3782.2005.02.014

    Hao M. , Xie L. L. , Xu L. J. , 2005. Some considerations on the physical measure of seismic intensity. Acta Seismologica Sinica, 27(2): 230—234. (in Chinese) doi: 10.3321/j.issn:0253-3782.2005.02.014
    [3] 郝明辉, 王珊, 张郁山, 2017. 峰值位移输入对单自由度体系地震反应的影响. 建筑结构学报, 38(1): 85—92

    Hao M. H. , Wang S. , Zhang Y. S. , 2017. Influence of input ground-motion peak displacement on non-linear dynamic response of single-degree-of-freedom system. Journal of Building Structures, 38(1): 85—92. (in Chinese)
    [4] 胡进军, 刁红旗, 谢礼立, 2013. 海底强地震动观测及其特征的研究进展. 地震工程与工程振动, 33(6): 1—8

    Hu J. J. , Diao H. Q. , Xie L. L. , 2013. Review of observation and characteristics of seafloor strong motion. Journal of Earthquake Engineering and Engineering Vibration, 33(6): 1—8. (in Chinese)
    [5] 胡进军, 郝彦春, 谢礼立, 2014. 潜在地震对我国南海开发和建设影响的初步考虑. 地震工程学报, 36(3): 616—621 doi: 10.3969/j.issn.1000-0844.2014.03.0616

    Hu J. J. , Hao Y. C. , Xie L. L. , 2014. Effects of potential earthquakes on construction and development in South China Sea region. China Earthquake Engineering Journal, 36(3): 616—621. (in Chinese) doi: 10.3969/j.issn.1000-0844.2014.03.0616
    [6] 胡进军, 郑鹏, 2017a. 基于日本滨海强震数据的不同震源类型的衰减关系比较. 建筑结构, 47(S1): 669—677

    Hu J. J. , Zheng P. , 2017a. Comparison of attenuation relationships of different seismic types based on strong earthquake data in coastal areas Japan. Building Structure, 47(S1): 669—677. (in Chinese)
    [7] 胡进军, 郑旭, 郝彦春等, 2017b. 俯冲带地震动特征及其衰减规律探讨. 地球物理学报, 60(5): 1773—1787

    Hu J. J. , Zheng X. , Hao Y. C. et al. , 2017b. Characterization of strong motion of subduction earthquakes and its attenuation relationship. Chinese Journal of Geophysics, 60(5): 1773—1787. (in Chinese)
    [8] 李小军, 李娜, 王巨科等, 2021. 场地地震动水平/竖向谱比与地表/基底谱比差异及修正水平/竖向谱比法研究. 震灾防御技术, 16(1): 81—90

    Li X. J. , Li N. , Wang J. K. , et al. , 2021. Difference between horizontal-to-vertical spectral ratio and surface-to-bedrock spectral ratio of strong-motion and modified horizontal-to-vertical spectral ratio method. Technology for Earthquake Disaster Prevention, 16(1): 81—90. (in Chinese)
    [9] 李雪红, 王文科, 吴迪等, 2014. 长周期地震动的特性分析及界定方法研究. 振动工程学报, 27(5): 685—692 doi: 10.3969/j.issn.1004-4523.2014.05.006

    Li X. H. , Wang W. K. , Wu D. , et al. , 2014. The bounded method and characteristics analysis for long-period ground motions. Journal of Vibration Engineering, 27(5): 685—692. (in Chinese) doi: 10.3969/j.issn.1004-4523.2014.05.006
    [10] 廖述清, 裴星洙, 周晓松等, 2005. 长周期地震动作用下结构的弹塑性地震反应分析. 建筑结构, 35(5): 24—27

    Liao S. Q. , Pei X. Z. , Zhou X. S. , et al. , 2005. Elastic-plastic analysis of earthquake response of structures under the long-period earthquake motion. Building Structure, 35(5): 24—27. (in Chinese)
    [11] 谭景阳, 胡进军, 谢礼立, 2021a. 海域地震动长周期特性及其强度指标研究. 振动与冲击, 40(30): 1—9, 27

    Tan J. Y. , Hu J. J. , Xie L. L. , 2021a. Long-period characteristics of offshore ground motion and its and intensity index. Journal of Vibration and Shock, 40(30): 1—9, 27. (in Chinese)
    [12] 谭景阳, 胡进军, 周旭彤等, 2021b. 海底与陆地地震动反应谱比定量分析. 振动与冲击, 40(2): 213—219, 227

    Tan J. Y. , Hu J. J. , Zhou X. T. , et al. , 2021b. Quantitative analysis on the difference of spectral ratios between offshore and onshore ground motions. Journal of Vibration and Shock, 40(2): 213—219, 227. (in Chinese)
    [13] 王博, 白国良, 代慧娟, 2013. 典型地震动作用下长周期单自由度体系地震反应分析. 振动与冲击, 32(15): 190—196, 214 doi: 10.3969/j.issn.1000-3835.2013.15.034

    Wang B. , Bai G. L. , Dai H. J. , 2013. Seismic response analysis of long-period SDOF system under typical ground motions. Journal of Vibration and Shock, 32(15): 190—196, 214. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.15.034
    [14] 王笃国, 尤红兵, 张合等, 2021. 海域不同类别场地地震动参数变化规律研究. 震灾防御技术, 16(1): 116—122 doi: 10.11899/zzfy20210112

    Wang D. G. , You H. B. , Zhang H. , et al. , 2021. Study on the change of earthquake ground motion parameters for different classification sites of ocean areas. Technology for Earthquake Disaster Prevention, 16(1): 116—122. (in Chinese) doi: 10.11899/zzfy20210112
    [15] 王飞, 2016. 峰值速度和峰值位移对钢结构弹塑性地震反应影响研究. 北京: 中国地震局地球物理研究所.

    Wang F., 2016. Influence of PGV and PGD on structural nonlinear seismic response of steel buildings. Beijing: Institute of Geophysics, China Earthquake Administration. (in Chinese)
    [16] 吴琛, 周瑞忠, 2011. 基于小波包变换的长周期结构高频地震动瞬态反应研究. 土木工程学报, 44(6): 55—60

    Wu C. , Zhou R. Z. , 2011. Study of the transient response of long-period structures to high frequency earthquake based on wavelet packets transform. China Civil Engineering Journal, 44(6): 55—60. (in Chinese)
    [17] 谢礼立, 周雍年, 胡成祥等, 1990. 地震动反应谱的长周期特性. 地震工程与工程振动, 10(1): 1—20

    Xie L. L. , Zhou Y. N. , Hu C. X. , et al. , 1990. Characteristics of response spectra of longperiod earthquake ground motion. Earthquake Engineering and Engineering Vibration, 10(1): 1—20. (in Chinese)
    [18] 颜桂云, 肖晓菲, 吴应雄等, 2018. 近断层地震动作用下大底盘单塔楼隔震结构振动台试验研究. 振动工程学报, 31(5): 799—810

    Yan G. Y. , Xiao X. F. , Wu Y. X. , et al. , 2018. Shaking table test of isolated single-tower structures with a large chassis under near-fault ground motions. Journal of Vibration Engineering, 31(5): 799—810. (in Chinese)
    [19] 叶列平, 马千里, 缪志伟, 2009. 结构抗震分析用地震动强度指标的研究. 地震工程与工程振动, 29(4): 9—22

    Ye L. P. , Ma Q. L. , Miao Z. W. , 2009. Study on earthquake intensities for seismic analysis of structures. Journal of Earthquake Engineering and Engineering Vibration, 29(4): 9—22. (in Chinese)
    [20] 袁峰, 钟菊芳, 邱卓, 2018. 水平旋转不变平均持时特征分析. 地震工程学报, 40(1): 178—187 doi: 10.3969/j.issn.1000-0844.2018.01.178

    Yuan F. , Zhong J. F. , Qiu Z. , 2018. Analysis of characteristics of horizontal rotation-invariant mean duration. China Earthquake Engineering Journal, 40(1): 178—187. (in Chinese) doi: 10.3969/j.issn.1000-0844.2018.01.178
    [21] 钟德理, 冯启民, 2004. 基于地震动参数的建筑物震害研究. 地震工程与工程振动, 24(5): 46—51 doi: 10.3969/j.issn.1000-1301.2004.05.009

    Zhong D. L. , Feng Q. M. , 2004. Investigation on building destruction based on seismic coefficient. Earthquake Engineering and Engineering Vibration, 24(5): 46—51. (in Chinese) doi: 10.3969/j.issn.1000-1301.2004.05.009
    [22] 中华人民共和国建设部, 国家质量监督检验检疫总局, 2004. GB 50011—2001 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Construction of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine, 2004. GB 50011—2001 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    [23] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2016. GB 50011——2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2016. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    [24] 周宝峰, 2012. 强震观测中的关键技术研究. 哈尔滨: 中国地震局工程力学研究所.

    Zhou B. F., 2012. Some key issues on the strong motion observation. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    [25] 周旭彤, 胡进军, 谭景阳等, 2021. 基于HVSR的DONET1海底地震动场地效应研究. 震灾防御技术, 16(1): 105—115 doi: 10.11899/zzfy20210111

    Zhou X. T. , Hu J. J. , Tan J. Y. , et al. , 2021. The study of site effect of DONET1 offshore ground motions based on HVSR. Technology for Earthquake Disaster Prevention, 16(1): 105—115. (in Chinese) doi: 10.11899/zzfy20210111
    [26] 朱镜清, 1988. 地震作用下海水与海床土的耦合运动. 地震工程与工程振动, 8(2): 37—43

    Zhu J. Q. , 1988. Coupled motion between sea water and sea bed-soil under earthquake action. Earthquake Engineering and Engineering Vibration, 8(2): 37—43. (in Chinese)
    [27] Akkar S. , Küçükdoğan B. , 2008. Direct use of PGV for estimating peak nonlinear oscillator displacements. Earthquake Engineering & Structural Dynamics, 37(12): 1411—1433.
    [28] Bommer J. J., Martínez-Pereira A., 2000. Strong-motion parameters: definition, usefulness and predictability[C]//Proc. of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
    [29] Boore D. M. , Smith C. E. , 1999. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS) instruments deployed off the coast of southern California. Bulletin of the Seismological Society of America, 89(1): 260—274. doi: 10.1785/BSSA0890010260
    [30] Boore D. M. , 2004. Can site response be predicted?. Journal of Earthquake Engineering, 8(S1): 1—41.
    [31] Boore D. M. , Bommer J. J. , 2005. Processing of strong-motion accelerograms: needs, options and consequences. Soil Dynamics and Earthquake Engineering, 25(2): 93—115. doi: 10.1016/j.soildyn.2004.10.007
    [32] CEN, 2005. I. S. EN 1998-1: 2005 Eurocode 8: design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. Ireland: CEN, 33—44.
    [33] Dhakal Y. P. , Kunugi T. , Suzuki W. , et al. , 2021. Strong motions on land and ocean bottom: comparison of horizontal PGA, PGV, and 5% damped acceleration response spectra in northeast Japan and the Japan Trench Area. Bulletin of the Seismological Society of America, 111(6): 3237—3260. doi: 10.1785/0120200368
    [34] Diao H. Q. , Hu J. J. , Xie L. L. , 2014. Effect of seawater on incident plane P and SV waves at ocean bottom and engineering characteristics of offshore ground motion records off the coast of southern California, USA. Earthquake Engineering and Engineering Vibration, 13(2): 181—194. doi: 10.1007/s11803-014-0222-4
    [35] Hayes G. P. , Moore G. L. , Portner D. E. , et al. , 2018. Slab2, A comprehensive subduction zone geometry model. Science, 362(6410): 58—61. doi: 10.1126/science.aat4723
    [36] Masi A. , Vona M. , Mucciarelli M. , 2011. Selection of natural and synthetic Accelerograms for seismic vulnerability studies on reinforced concrete frames. Journal of Structural Engineering, 137(3): 367—378. doi: 10.1061/(ASCE)ST.1943-541X.0000209
    [37] Neumann F. , 1960. A broad formula for estimating earthquake forces on oscillators. In: Proceedings of the 2nd World Conference on Earthquake Engineering. Tokyo: Science Council of Japan, 849—862.
    [38] SAC Joint Venture, 2000. State of the art report on systems performance of steel moment frames subject to earthquake ground shaking. Sacramento, California: Federal Emergency Management Agency, FEMA-355C, 1.1—8.6.
    [39] Tichelaar B. W. , Ruff L. J, 1991. Seismic coupling along the chilean subduction zone. Journal of Geophysical Research: Solid Earth, 96(B7): 11997—12022. doi: 10.1029/91JB00200
    [40] Yakhchalian M. , Amiri G. G. , 2019. A vector intensity measure to reliably predict maximum drift in low-to mid-rise buildings. Structures and Buildings, 172(1): 42—54.
    [41] Zhao J. X. , Zhou S. L. , Gao P. J. , et al. , 2015. An earthquake classification scheme adapted for Japan determined by the goodness of fit for ground-motion prediction equations. Bulletin of the Seismological Society of America, 105(5): 2750—2763. doi: 10.1785/0120150013
    [42] Zhu T. J. , Tso W. K. , Heidebrecht A. C. , 1988. Effect of peak ground a/v ratio on structural damage. Journal of Structural Engineering, 114(5): 1019—1037. doi: 10.1061/(ASCE)0733-9445(1988)114:5(1019)
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  703
  • HTML全文浏览量:  105
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回