IBEM Results of Seismic Wave Scattering by Typical Local Topography in Layered Half-space: 2D Frequency Domain Displacement Amplitudes
-
摘要: 局部地形对地震动影响的本质是不规则体对地震波的散射,目前对此问题的研究仍主要依赖于各类数值方法。近年来,笔者提出了基于层状半空间中均布荷载动力格林函数的间接边界元方法(IBEM),从维度方面已涵盖二维、2.5维和三维,从介质方面已涵盖各向同性、横观各向同性的弹性和饱和介质,从地形方面包括凹陷、凸起和沉积。广泛验证表明,该方法不仅精度高,而且对复杂几何形状适应性强。为便于其他数值研究的对比验证,笔者将前期研究成果进行整理与补充,给出了各向同性弹性介质中二维凹陷、凸起和沉积对平面SH波、P波和SV波的散射结果。Abstract: The influence of local topography on seismic motion is primarily due to wave scattering caused by surface irregularities. Current research in this area largely relies on numerical methods. Recently, an Indirect Boundary Element Method (IBEM) based on the dynamic Green's function for uniformly distributed loads in a layered half-space has been developed to study typical topographical features such as canyons, hills, and alluvial basins. This method has been extended to 2D, 2.5D, and 3D configurations, as well as to various media, including isotropic elastic and saturated, and transversely isotropic elastic and saturated materials. Extensive validation has demonstrated that the IBEM offers high accuracy and strong adaptability to complex geometries. To facilitate comparison with other numerical methods, the authors intend to compile and expand upon their previous work in a series of papers. This paper presents the scattering results of plane SH waves, P waves, and SV waves by 2D canyons, hills, and alluvial basins in isotropic elastic media. Subsequent results will be published in future papers.
-
Key words:
- Layered half-space /
- 2D local topography /
- Plane wave /
- Scattering /
- IBEM
-
引言
诸多强震观测和震害调查表明,局部地形对地震作用有着显著的影响,会导致震害分布区域化。例如,1985年墨西哥地震,松软盆地效应使距震中400多公里处的墨西哥城地表地震动放大6倍多,持时长达180 s(Anderson等,1986);2008年汶川地震,自贡山体顶部台站测得的放大系数与山脚处有明显差异,同频率下前者最高可达后者的5倍(王海云等,2010);2014年芦山地震,位于龙门河床中心位置处的村庄出现大面积房屋倒塌,而河床边缘处的房屋基本未丧失使用功能(齐文浩等,2013)。因此,精确高效评估局部地形效应是学术界和工程界亟待解决的问题。
局部场地效应计算方法包括解析法和数值方法。解析法物理意义明确,且可用于验证数值方法的精度,但由于半空间波动问题解析求解的复杂性,目前解析法多限于均匀半空间中简单形状地形对SH波的响应。对于更加复杂的情况,需依赖有限差分、有限元、谱元、边界元等数值方法求解。笔者近年来建立了基于层状半空间均布荷载动力格林函数的间接边界元法(IBEM),用于求解层状半空间中局部地形对地震动的散射问题,经验证该方法不仅精度高,同时对复杂边界有着很强的适应性。对于二维问题,相应地求解了凹陷地形、凸起地形和沉积地形对平面SH波、P波和SV波的散射(梁建文等,2005,2007,2008;尤红兵等,2006,2008,2009;Ba等,2011,2016;巴振宁等,2011a,2011b,2017a,2017b,2018a,2018b,2020;张季等,2016)。
鉴于此类问题的研究结果多限于均匀半空间情况,层状半空间研究结果较少。因此,本文对前期研究的二维层状半空间相关结果进行了梳理与补充,以期与其他数值解相互比较验证。文中给出了不同频率和角度的平面SH波、P波和SV波入射时基岩上单一土层中凹陷、凸起、沉积地形附近的地表位移幅值。
1. 研究方法
本文利用IBEM求解地震波作用下二维局部地形响应。首先将总波场分解为自由波场和散射波场。自由波场定义为无局部地形存在的层状半无限空间在SH波、P波和SV波入射下的动力响应,由直接刚度法求解(基于层状半空间精确动力刚度矩阵)(Wolf,1985);散射波场定义为由于局部地形产生的附加波场,基于惠更斯原理和单层位势理论,采用均布斜线荷载动力格林函数模拟。方法正确性在前期研究中已得到广泛验证,此文不作讨论。详细方法介绍可参考梁建文等(2007)、巴振宁等(2011a)的研究成果。
2. 模型及参数
本文模型选取最简单的层状半空间(基岩半空间和单一土层组成)中单一凹陷、凸起及沉积地形,入射波为平面SH波、P波和SV波。
凹陷地形选取半圆、三角和梯形这样的规则几何形状,模型及几何参数如图1所示,其中,a为局部地形半宽,H为土层厚度,θV为入射波与x轴方向夹角。层状半空间介质由以下材料参数确定:基岩质量密度ρR、土层质量密度ρL、基岩剪切波速
$c_{\mathrm{S}}^{\mathrm{R}} $ 、土层剪切波速$c_{\mathrm{S}}^{\mathrm{L}} $ 、基岩阻尼比ζ R、土层阻尼比ζ L、基岩泊松比μR及土层泊松比μL。入射波圆频率为ω,入射波幅值为A。定义无量纲频率η=ωa/π$c_{\mathrm{S}}^{\mathrm{L}} $ 。凸起地形相关几何参数和半空间材料参数与凹陷地形相同,模型如图2所示。凸起域材料参数如下:质量密度ρH、剪切波速
$c_{\mathrm{S}}^{\mathrm{H}} $ 及阻尼比ζ H。此外,需要指明的是,凸起域材料参数与土层参数一致,即质量密度ρH=ρL、剪切波速$c_{\mathrm{S}}^{\mathrm{H}} $ =$c_{\mathrm{S}}^{\mathrm{L}} $ 、阻尼比ζ H=ζ L。沉积地形相关几何参数和半空间材料参数与凹陷地形相同,模型如图3所示。沉积域材料参数如下:质量密度ρV、剪切波速
$c_{\mathrm{S}}^{\mathrm{V}} $ 及阻尼比ζ V。后续计算参数取值如下:土层厚度与地形半宽的比值H/a=1.0,基岩与土层的剪切波速比
$c_{\mathrm{S}}^{\mathrm{R}} $ /$c_{\mathrm{S}}^{\mathrm{L}} $ =5.0、质量密度比ρR/ρL=1.0,凸起域与土层的剪切波速比$c_{\mathrm{S}}^{\mathrm{H}} $ /$c_{\mathrm{S}}^{\mathrm{L}} $ =1.0、质量密度比ρH/ρL=1.0,沉积域与土层的剪切波速比$c_{\mathrm{S}}^{\mathrm{V}} $ /$c_{\mathrm{S}}^{\mathrm{L}} $ =0.5、质量密度比ρV/ρL=1.0,基岩阻尼比ζ R=0.02,局部地形阻尼比ζ L=ζ H=ζ V=0.05,基岩及土层泊松比μR=μL=μ=1/3。3. 数值结果
针对前文模型及参数给出数值结果,其中,半圆形沉积对平面SH波、P波和SV波的散射结果(梁建文等,2007;Ba等,2011;巴振宁等,2011a)及半圆形凸起对平面SH波的散射结果(梁建文等,2008)为前期研究成果,其余为本文补充结果。值得指出的是,二维情况下,SH波入射仅引起平面外(即y方向)的位移,P波、SV波入射会引起平面内(即x、z方向)的位移。令u、v和w分别代表x、y和z方向上的位移,入射波幅值分别以ASH、AP和ASV表示,本文结果中采用归一化位移幅值|v/ASH|、|u/AP|、|w/AP|、|u/ASV|和|w/ASV|衡量地震波入射时的地表响应。
3.1 凹陷地形对地震波的散射结果
凹陷地形对SH波、P波、SV波的散射结果分别如图4、图5、图6所示,其中,入射波无量纲频率分别取η=0.5、1.0和2.0,入射角度分别取θV=30°、60°和90°。
3.2 凸起地形对地震波的散射结果
凸起地形对SH波、P波、SV波的散射结果分别如图7、图8、图9所示,入射波频率、角度取值同凹陷地形情况一致。
3.3 沉积地形对地震波的散射结果
沉积地形对SH波、P波、SV波的散射结果分别如图10、图11、图12所示,入射波频率、角度取值同凹陷地形情况一致。
4. 结论
基于此前提出的IBEM,在波形、地形及几何形状方面对前期研究结果进行了进一步整理与补充,给出了多种工况下局部地形对地震波散射的二维频域解答,得到如下结论:
(1)局部地形对地表位移响应有较大影响,会改变其大小与分布,因此在实际工程中应考虑局部地形效应。
(2)入射波频率和角度对地表位移影响明显,频率越高,地表位移分布越复杂。
(3)地形几何形状的改变主要影响地表位移响应的空间分布,对其大小影响较小。
本文结果丰富了该问题层状半空间情况下的理论解答,可为其他数值方法提供对比验证,后续将对其余维度(2.5维和三维)进行研究。
-
-
巴振宁,梁建文,2011a. 平面SV波在层状半空间中沉积谷地周围的散射. 地震工程与工程振动,31(3):18−26.Ba Z. N., Liang J. W., 2011a. Diffraction of plane SV waves around an alluvial valley in layered half-space. Journal of Earthquake Engineering and Engineering Vibration, 31(3): 18−26. (in Chinese) 巴振宁,梁建文,2011b. 层状半空间中沉积谷地对入射SV波的放大作用−−时域解答. 自然灾害学报,20(3):131−138.Ba Z. N., Liang J. W., 2011b. Wave scattering of a depositional valley in layered half-space for incident plane SV waves: time domain solution. Journal of Natural Disasters, 20(3): 131−138. (in Chinese) 巴振宁,黄棣旸,梁建文等,2017a. 层状半空间中周期分布凸起地形对平面SH波的散射. 地球物理学报,60(3):1039−1052.Ba Z. N., Huang D. Y., Liang J. W., et al., 2017a. Scattering and diffraction of plane SH-waves by periodically distributed hill topographies. Chinese Journal of Geophysics, 60(3): 1039−1052. (in Chinese) 巴振宁,印枭,梁建文,2017b. 沉积层序对谷地场地地震反应的影响-SH波入射. 土木工程学报,50(1):91−103.Ba Z. N., Yin X., Liang J. W., 2017b. Effects of sedimentary sequence on the seismic response of valley sites-incident SH waves. China Civil Engineering Journal, 50(1): 91−103. (in Chinese) 巴振宁,陈昊维,梁建文,2018a. 任意多个沉积谷地对平面SV波的散射. 振动与冲击,37(5):98−107.Ba Z. N., Chen H. W., Liang J. W., 2018a. Scattering of arbitrary alluvial valleys to incident plane SV waves. Journal of Vibration and Shock, 37(5): 98−107. (in Chinese) 巴振宁,彭琳,梁建文等,2018b. 任意多个凸起地形对平面P波的散射. 工程力学,35(7):7−17,23.Ba Z. N., Peng L., Liang J. W., et al., 2018b. Scatter and diffraction of arbitrary number of hills for incident plane P-waves. Engineering Mechanics, 35(7): 7−17,23. (in Chinese) 巴振宁,吴孟桃,梁建文等,2020. 高山-峡谷复合地形对入射平面P-SV波的散射. 应用数学和力学,41(7):695−712.Ba Z. N., Wu M. T., Liang J. W., et al., 2020. Scattering and diffraction by the hill-canyon composite topography for incident plane P- and SV-Waves. Applied Mathematics and Mechanics, 41(7): 695−712. (in Chinese) 梁建文,尤红兵,2005. 层状半空间中洞室对入射平面P波的放大作用. 地震工程与工程振动,25(2):16−24. doi: 10.3969/j.issn.1000-1301.2005.02.003Liang J. W., You H. B., 2005. Amplification of plane P waves by a cavity in a layered half-space. Earthquake Engineering and Engineering Vibration, 25(2): 16−24. (in Chinese) doi: 10.3969/j.issn.1000-1301.2005.02.003 梁建文,巴振宁,2007. 弹性层状半空间中沉积谷地对入射平面SH波的放大作用. 地震工程与工程振动,27(3):1−9. doi: 10.3969/j.issn.1000-1301.2007.03.001Liang J. W., Ba Z. N., 2007. Surface motion of an alluvial valley in layered half-space for incident plane SH waves. Journal of Earthquake Engineering and Engineering Vibration, 27(3): 1−9. (in Chinese) doi: 10.3969/j.issn.1000-1301.2007.03.001 梁建文,巴振宁,2008. 弹性层状半空间中凸起地形对入射平面SH波的放大作用. 地震工程与工程振动,28(1):1−10.Liang J. W., Ba Z. N., 2008. Surface motion of a hill in layered half-space subjected to incident plane SH waves. Journal of Earthquake Engineering and Engineering Vibration, 28(1): 1−10. (in Chinese) 齐文浩,陈龙伟,单振东等,2013. 芦山7.0级地震宏观场地效应. 地震工程与工程振动,33(4):29−34.Qi W. H., Chen L. W., Shan Z. D., et al., 2013. Summary of macro-level site effects in M S7.0 Lushan earthquake. Journal of Earthquake Engineering and Engineering Vibration, 33(4): 29−34. (in Chinese) 王海云,谢礼立,2010. 自贡市西山公园地形对地震动的影响. 地球物理学报,53(7):1631−1638. doi: 10.3969/j.issn.0001-5733.2010.07.014Wang H. Y., Xie L. L., 2010. Effects of topography on ground motion in the Xishan Park, Zigong City. Chinese Journal of Geophysics, 53(7): 1631−1638. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.07.014 尤红兵,梁建文,2006. 层状半空间中洞室对入射平面SV波的散射. 岩土力学,27(3):383−388. doi: 10.3969/j.issn.1000-7598.2006.03.009You H. B., Liang J. W., 2006. Scattering of plane SV waves by a cavity in a layered half-space. Rock and Soil Mechanics, 27(3): 383−388. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.03.009 尤红兵,赵凤新,李方杰,2008. 层状场地中任意形状沉积河谷对平面SH波的散射. 防灾减灾工程学报,28(3):313−318. doi: 10.3969/j.issn.1672-2132.2008.03.010You H. B., Zhao F. X., Li F. J., 2008. Scattering of SH waves by an alluvial valley of arbitrary shape in a layered half-space. Journal of Disaster Prevention and Mitigation Engineering, 28(3): 313−318. (in Chinese) doi: 10.3969/j.issn.1672-2132.2008.03.010 尤红兵,赵凤新,李方杰,2009. 层状场地中局部不均体对平面P波的散射. 岩土力学,30(10):3133−3138. doi: 10.3969/j.issn.1000-7598.2009.10.041You H. B., Zhao F. X., Li F. J., 2009. Scattering of P waves by a local nonhomogeneous body in a layered half-space. Rock and Soil Mechanics, 30(10): 3133−3138. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.10.041 张季,梁建文,巴振宁,2016. SH波入射时凸起场地的地形和土层放大效应. 地震工程与工程振动,36(2):56−67.Zhang J., Liang J. W., Ba Z. N., 2016. Topography and soil amplification for hill site when incident SH wave. Earthquake Engineering and Engineering Dynamics, 36(2): 56−67. (in Chinese) Anderson J. G., Bodin P., Brune J. N., et al., 1986. Strong ground motion from the Michoacan, Mexico, earthquake. Science, 233(4768): 1043−1049. doi: 10.1126/science.233.4768.1043 Ba Z. N., Liang J. W., 2011. Surface motion of alluvial valley in layered half-space for incident plane P-waves. Transactions of Tianjin University, 17(3): 157−165. doi: 10.1007/s12209-011-1627-z Ba Z. N., Yin X., 2016. Wave scattering of complex local site in a layered half-space by using a multidomain IBEM: incident plane SH waves. Geophysical Journal International, 205(3): 1382−1405. doi: 10.1093/gji/ggw090 Wolf J. P. , 1985. Dynamic soil-structure interaction. Englewood Cliffs: Prentice-Hall. -