• ISSN 1673-5722
  • CN 11-5429/P

自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析

梁晓 姜浩然 李芳芳

樊晓春, 李伟, 孙君嵩, 丁烨, 吴帆, 袁慎杰. 垂向地电阻率观测装置系数的计算——以江宁地震台为例[J]. 震灾防御技术, 2020, 15(3): 651-657. doi: 10.11899/zzfy20200320
引用本文: 梁晓,姜浩然,李芳芳,2024. 自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析. 震灾防御技术,19(3):613−628. doi:10.11899/zzfy20240319. doi: 10.11899/zzfy20240319
Fan Xiaochun, Li Wei, Sun Junsong, Ding Ye, Wu Fan, Yuan Shenjie. Calculation of Configuration Coefficient in the Vertical Geo-resistivity Observation——Taking the Jiangning Seismic Station as an Example[J]. Technology for Earthquake Disaster Prevention, 2020, 15(3): 651-657. doi: 10.11899/zzfy20200320
Citation: Liang Xiao, Jiang Haoran, Li Fangfang. Seismic Fragility Analysis of Self-centering Precast Segmental Concrete-filled Double Skin Steel Tubular Piers[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 613-628. doi: 10.11899/zzfy20240319

自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析

doi: 10.11899/zzfy20240319
基金项目: 国家自然科学基金(52238012、52278515、52308519);天津市科技计划项目(23JCYBJC00750、23JCQNJC00910)
详细信息
    作者简介:

    梁晓,女,生于1987年。博士,副教授。主要从事工程结构抗震研究。E-mail:xliang@tcu.edu.cn

    通讯作者:

    李芳芳,女,生于1988年。博士。主要从事工程结构抗震研究。E-mail:fangfangbjut@126.com

Seismic Fragility Analysis of Self-centering Precast Segmental Concrete-filled Double Skin Steel Tubular Piers

  • 摘要: 为评估自复位预制节段拼装中空夹层钢管混凝土(Concrete-filled Double Skin Steel Tubular, CFDST)桥墩在地震动作用下的易损性,本研究基于现有的低周反复荷载试验数据,采用有限元分析方法,选用墩顶水平位移角和残余位移角2个指标作为评估标准进行定量分析。针对3种不同类型地震动(远场、近场无脉冲和近场有脉冲),分别建立了关于水平位移角和残余位移角2个指标的易损性曲线,并分析了不同损伤指标和地震动类型对其地震易损性的影响。研究结果表明,在自复位预制节段拼装CFDST桥墩地震易损性分析中,仅采用水平位移角作为损伤指标是安全可靠的;相比远场地震动和近场无脉冲型地震动而言,近场脉冲型地震动对自复位预制节段拼装CFDST桥墩的变形和自复位有显著影响。
  • 地震前兆观测主要关注观测数据随时间的相对变化,装置系数误差不影响观测数据的相对变化,但不正确的装置系数可能导致地电阻率观测结果出现系统误差(王兰炜等,2014),因此,正确的装置系数有利于不同区域观测数据的对比和地震前兆数据的研究。自2009年起,河北大柏舍台,甘肃天水台、武都台、平凉台,陕西合阳台实施了井下地电阻率垂直观测试验,井孔深100—225m,供电极距60—120m,测量极距20—60m(刘君等,2015王兰炜等,2015)。上述台站地电阻率垂向观测通常为1个钻孔,供电电极和测量电极均布设于1个钻孔中,部分垂向观测的供电电极A接近地表,如天水台、武都台、合阳台的供电电极A埋深仅4—5m;部分垂向观测的供电电极A埋深为40m左右,如大柏舍台。垂向地电阻率观测中的装置系数与电流的空间分布及电极位置有关,现有垂向观测装置系数计算方法依据地下点、地表点电流源产生的电场计算得出,忽略了供电电极A的埋深。江宁台深井垂向地电阻率观测装置为在2口深井进行垂向观测的试验装置,与传统垂向地电阻率观测装置不同。本文根据地下点电流源产生的电场讨论装置系数计算方法,并比较计算方法对江宁台垂向地电阻率观测的影响。

    江宁台地处南京市江宁区禄口街道水荆墅村,地形开阔平坦,周围无大中型工矿企业,测区位于南京-湖熟断裂南西盘和方山-小丹阳断裂西盘的楔形地块上,东距茅山断裂带30km,西北距长江36km。测区内现有垂向地电阻率观测装置为在2口深井进行垂向观测的试验装置,井距5.17m,供电电极A、测量电极M分别布设在深275m的2号井内200m和275m处,供电电极B、测量电极N分别布设在深400m的1号井内400m和325m处(图 1)。该垂向观测系统采用ZD8BI型地电仪,根据《地震台站建设规范(地电台站第1部分)》(DB/T.18.1—2006)中关于地电阻率台站的技术要求,对新建垂向观测装置的场地进行高密度电法、电测深等测试。高密度电法探测和电测深报告中NW—SE和NS测线结果表明,观测区域电测深曲线具有K形特征,电性结构等效为3层(樊晓春等,2018),场地电性层参数见表 1

    图 1  江宁台垂向观测电极布极图
    Figure 1.  The diagram of electrodes deployment
    表 1  江宁台场地电性层参数
    Table 1.  The underground electrical structure of Jiangning geoelectric station
    NW—SE测线 NS测线
    层厚/m 电阻率/Ω·m 层厚/m 电阻率/Ω·m
    29.40 39.29 24.56 18.71
    220.94 143.06 203.42 274.52
    60.39 54.79
    下载: 导出CSV 
    | 显示表格

    点电流处于不完全全空间时,对点电流源位于地下和地表 2种情况进行讨论。地下点电流源产生的电场指点电流源的电流I在地下一定深度时流入地下介质中产生的电场,为不完全全空间。假设地下介质电性均匀,介质电阻率为ρ,电流I从地下A点流入(图 2),采用镜像法计算(刘昌谋等,1994刘国兴,2005),见式(1)。地表点电流源产生的电场指地表点电流源电流I流入地下介质,从无限远处流出时在介质中产生的电场,为半无限空间。假设地下介质电性均匀,介质电阻率为ρ,电流I从地表A点流入地下,电流线的分布以A为中心向周围呈辐射状,该情况为图 2的特例(王兰炜等,2014),见式(2)。

    图 2  地下点电源产生的电场示意图
    Figure 2.  The schematic diagram of the electric field generated by underground point power supply

    (1)地下点电流源产生的电场(不完全全空间)

    $$ {V_{{\rm{MN}}}} = \frac{{\rho I}}{{4{\rm{ \mathsf{ π} }}}}\left({\frac{1}{{\overline {AM} }} + \frac{1}{{\overline {{A_1}M} }} - \frac{1}{{\overline {{A_1}N} }} - \frac{1}{{\overline {AN} }}} \right) $$ (1)

    (2)地表点电流源产生的电场(半无限空间)

    $$ {V_{{\rm{MN}}}} = \frac{{\rho I}}{{2{\rm{ \mathsf{ π} }}}}\left({\frac{1}{{\overline {AM} }} - \frac{1}{{\overline {AN} }}} \right) $$ (2)

    装置系数是地电阻率观测中特有的参数,通常用K表示,与观测装置中电极分布情况有关,表征地电阻率是视电阻率(王兰炜等,2014)。当测区区域介质电阻率均匀分布时,地电阻率ρs与介质真实的电阻率ρ数值相同。

    根据奥斯定理和镜像原理(钱家栋等,1985),假设测区为均匀介质,垂向观测中的装置系数计算方法如下:

    (1)方法Ⅰ:传统垂向观测装置系数计算方法(王兰炜等,2014

    传统方法井下垂向观测装置忽略电极A的埋深,在点电源B与地面对称的位置设镜像点B1,见图 3(a)。根据式(1)和式(2),则K为:

    图 3  江宁台垂向观测示意
    Figure 3.  The schematic diagram of vertical geo-resistivity observation
    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\left({\frac{2}{{\overline {AM} }} - \frac{2}{{\overline {AN} }}} \right) - \left({\frac{1}{{\overline {BM} }} + \frac{1}{{\overline {{B_1}M} }} - \frac{1}{{\overline {{B_1}N} }} - \frac{1}{{\overline {BN} }}} \right)}} $$ (3)

    不考虑江宁台垂向观测电极A埋深时,因江宁台垂向观测AM=BNAN=BM,则:

    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\frac{3}{{\overline {AM} }} - \frac{3}{{\overline {AN} }} - \frac{1}{{\overline {{B_1}M} }} + \frac{1}{{\overline {{B_1}N} }}}} $$ (4)

    (2)方法Ⅱ:采用全空间方式的装置系数计算方法(钱家栋等,1985王兰炜等,2014

    当电极埋深h远大于供电极长度AB时,为全空间,则K为地表观测装置系数的2倍,即:

    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\frac{1}{{\overline {AM} }} - \frac{1}{{\overline {AN} }} - \frac{1}{{\overline {BM} }} + \frac{1}{{\overline {BN} }}}} $$ (5)

    (3)方法Ⅲ:采用不完全全空间方式的装置系数计算方法

    江宁台垂向观测的电极AMNB分别位于埋深200m、275m、325m、400m处,应按地下点电源产生的电场模型计算(不完全全空间),如图 3(b)所示。在点电源AB与地面对称的位置设镜像点A1B1,忽略1号井和2号井的水平距离l,根据式(1),则供电电流I(+I和-I)在MN间产生的电位差为:

    $$ {V_{MN}} = \frac{{\rho I}}{{4{\rm{ \mathsf{ π} }}}}\left[ {\left({\frac{1}{{\overline {AM} }} + \frac{1}{{\overline {{A_1}M} }} - \frac{1}{{\overline {{A_1}N} }} - \frac{1}{{\overline {AN} }}} \right) - \left({\frac{1}{{\overline {BM} }} + \frac{1}{{\overline {{B_1}M} }} - \frac{1}{{\overline {{B_1}N} }} - \frac{1}{{\overline {BN} }}} \right)} \right] $$ (6)

    K为:

    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\left({\frac{1}{{\overline {AM} }} + \frac{1}{{\overline {{A_1}M} }} - \frac{1}{{\overline {AN} }} - \frac{1}{{\overline {{A_1}N} }}} \right) - \left({\frac{1}{{\overline {BM} }} + \frac{1}{{\overline {{B_1}M} }} - \frac{1}{{\overline {BN} }} - \frac{1}{{\overline {{B_1}N} }}} \right)}} $$ (7)

    因江宁台垂向观测AM=BNAN=BM,则:

    $$ K = \frac{{4{\rm{ \mathsf{ π} }}}}{{\frac{2}{{\overline {AM} }} - \frac{2}{{\overline {AN} }} + \frac{1}{{\overline {{A_1}M} }} - \frac{1}{{\overline {{A_1}N} }} - \frac{1}{{\overline {{B_1}M} }} + \frac{1}{{\overline {{B_1}N} }}}} $$ (8)

    (4)方法Ⅳ:采用不完全全空间方式(考虑井距l)的装置系数计算方法

    按照地下点电源产生电场的模型计算(不完全全空间),在点电源AB与地面对称的位置设镜像点A1B1h1h2h3表示供电电极A、BM的电极埋深,井距l表示2口井孔水平距离(图 3(c)),则:

    $$ \overline {AM} = {h_3} - {h_1} $$ (9)
    $$ \overline {AN} = \sqrt {{l^2} + {{({h_2} - {h_3})}^2}} $$ (10)
    $$ \overline {{A_1}M} = {h_1} + {h_3} $$ (11)
    $$ \overline {{A_1}N} = \sqrt {{l^2} + {{({h_2} + 2{h_1} - {h_3})}^2}} $$ (12)
    $$ \overline {{B_1}M} = \sqrt {{l^2} + {{({h_2} + {h_3})}^2}} $$ (13)
    $$ \overline {{B_1}N} = 2{h_2} - {h_3} + {h_1} $$ (14)

    将式(9)至式(14)代入式(8),则K变为:

    $$ K = \frac{{4\pi }}{{\frac{2}{{{h_3} - {h_1}}} - \frac{2}{{\sqrt {{l^2} + {{({h_2} - {h_3})}^2}} }} + \frac{1}{{{h_1} + {h_3}}} - \frac{1}{{\sqrt {{l^2} + {{({h_2} + 2{h_1} - {h_3})}^2}} }} - \frac{1}{{\sqrt {{l^2} + {{({h_2} + {h_3})}^2}} }} + \frac{1}{{2{h_2} - {h_3} + {h_1}}}}} $$ (15)

    采用方法Ⅰ—Ⅳ分别计算江宁台垂向地电阻率观测的装置系数K,结果见表 2。考虑江宁台垂向地电阻率观测的电极布设不同于传统垂向观测装置,所有电极埋深均在200m以上,本文认为应以方法Ⅳ为参考值,采用式(16)计算不同装置系数计算方法的相对误差。方法Ⅰ、Ⅱ、Ⅲ相对误差分别为-32.01%、1.37%、0.43%,可知方法Ⅰ不适用于江宁台垂向地电阻率观测,该计算方法通常仅适用于供电电极A埋深小于5m的垂向观测,如天水台、合阳台。方法Ⅱ相对误差较小,江宁台垂向观测于2018年4月25日至2018年11月22日曾采用该方法。考虑仅当电极埋深远大于供电极距时称为全空间,而江宁台垂向装置最小电极埋深仅与供电极距相当,因此,方法Ⅱ同样不适用于江宁台垂向观测。除江宁台外,大部分台站观测装置电极埋深明显小于供电极距,均不宜采用方法Ⅱ。方法Ⅲ相对误差最小,江宁台垂向地电阻率观测于2018年11月23日至2019年10月30日曾采用该方法,2018年11月出现的台阶是由调整装置系数导致的(图 4)。由于江宁台垂向地电阻率观测为多孔观测,须考虑井距才能准确计算其装置系数,因而最终采用方法Ⅳ进行计算。

    $$ \sigma = \frac{{k_{方法}} - {k_{方法Ⅳ}}}{{{k_{方法Ⅳ}}}} $$ (16)
    表 2  江宁台垂向观测的装置系数
    Table 2.  The configuration coefficient of vertical geo-resistivity observation in Jiangning earthquake station
    计算方法 AM/m AN/m B1M/m B1N/m A1M/m A1N/m 装置系数K
    75.000 125.000 675.000 725.000 790.000
    75.000 125.000 1178.000
    75.000 125.000 675.000 725.000 475.000 525.000 1167.000
    75.000 125.374 675.020 725.000 475.000 525.292 1162.000
    下载: 导出CSV 
    | 显示表格
    图 4  江宁台垂向观测整点值曲线
    Figure 4.  The hourly observational value curves of vertical geo-resistivity observation at Jiangning Seismic Station

    本文以江宁台垂向地电阻率观测为例,提出2种以不完全全空间方式计算的新方法,并与现有垂向观测装置计算方法进行比较。研究结果表明,方法Ⅳ最符合江宁台垂向地电阻率观测装置。考虑方法Ⅳ中部分参数存在小数部分,认为保留小数点后三位能满足装置系数精度要求。方法Ⅳ除适用于2口井垂向观测装置外,同样适用于忽略井距时供电电极A埋深超过5m的单口井垂向观测装置。

    致谢: 衷心感谢中国地震局地壳应力研究所王兰炜研究员对本文提出的建议和意见。
  • 图  1  自复位预制节段拼装CFDST桥墩构造示意图

    Figure  1.  Diagram of self-centering precast segmental assembled CFDST pier

    图  2  试件截面尺寸(单位:毫米)

    Figure  2.  Cross-sectional dimension of specimen (Unit: mm)

    图  3  自复位预制节段拼装CFDST桥墩数值模型

    Figure  3.  Numerical model of self-centering precast segmental assembled CFDST pier

    图  4  滞回曲线(Li等,2023b

    Figure  4.  Hysteretic curve of self-centering precast segmental assembled CFDST piers (Li et al., 2023b

    图  5  基于最大水平位移角的地震概率需求模型

    Figure  5.  Earthquake probability demand model base on maximum horizontal displacement angle

    图  6  基于残余位移角的地震概率需求模型

    Figure  6.  Earthquake probability demand model base on residual displacement angle

    图  7  基于最大墩顶水平位移角指标的易损性曲线

    Figure  7.  Vulnerability curve based on the maximum horizontal displacement angle of pier top

    图  8  基于墩顶残余位移角指标的易损性曲线

    Figure  8.  Vulnerability curve based on the residual displacement angle of pier top

    图  9  近场无脉冲地震动作用下基于不同损伤指标的易损性曲线

    Figure  9.  Vulnerability curves based on different damage indexes under near-field non-pulse-like ground motion

    图  10  近场脉冲地震动作用下基于不同损伤指标的易损性曲线

    Figure  10.  Vulnerability curves based on different damage indexes under near-field pulse-like ground motion

    图  11  远场地震动作用下基于不同损伤指标的易损性曲线

    Figure  11.  Vulnerability curves based on different damage indexes under far-field ground motion

    图  12  基于最大水平位移角的自复位预制节段拼装CFDST桥墩地震易损性曲线

    Figure  12.  Self-centering precast segmental CFDST pier vulnerability curves based on the maximum horizontal displacement angle under earthquake ground motions

    图  13  基于残余位移角的自复位预制节段拼装CFDST桥墩地震易损性曲线

    Figure  13.  Self-centering precast segmental CFDST pier vulnerability curves based on the residual displacement angle under earthquake ground motions

    表  1  关键性能指标

    Table  1.   Critical performance indexes

    屈服位移/mm 屈服荷载/kN 峰值荷载/kN 弹性刚度/(kN·mm−1) 峰值残余位移/mm
    试验 17.8 208 319 11.7 30.0
    模拟 18.0 216 308 12.0 31.8
    相对误差 1.1% 3.8% 3.4% 2.6% 6.0%
    下载: 导出CSV

    表  2  远场地震动记录

    Table  2.   Far-field ground motion records

    编号 地震名称 年份 站台名称 震级/级 Rrup/km T90%/s
    1 "Northwest Calif-01" 1938 "Ferndale City Hall" 5.5 53.58 11.6
    2 "Northwest Calif-02" 1941 "Ferndale City Hall" 6.6 91.22 22.2
    3 "Northern Calif-01" 1941 "Ferndale City Hall" 6.4 44.68 15.5
    4 "Borrego" 1942 "El Centro Array #9" 6.5 56.88 37.2
    5 "Northwest Calif-03" 1951 "Ferndale City Hall" 5.8 53.77 15.4
    6 "Kern County" 1952 "LA - Hollywood Stor FF" 7.36 117.75 33.5
    7 "Kern County" 1952 "Pasadena - CIT Athenaeum" 7.36 125.59 29.5
    8 "Kern County" 1952 "Santa Barbara Courthouse" 7.36 82.19 33.6
    9 "Kern County" 1952 "Taft Lincoln School" 7.36 38.89 30.3
    10 "Northern Calif-02" 1952 "Ferndale City Hall" 5.2 43.28 18.4
    11 "Northern Calif-03" 1954 "Ferndale City Hall" 6.5 27.02 19.4
    12 "El Alamo" 1956 "El Centro Array #9" 6.8 121.7 40.9
    13 "Northern Calif-04" 1960 "Ferndale City Hall" 5.7 57.21 28.4
    14 "Northern Calif-05" 1967 "Ferndale City Hall" 5.6 28.73 22.1
    15 "Borrego Mtn" 1968 "El Centro Array #9" 6.63 45.66 49.3
    16 "Borrego Mtn" 1968 "San Onofre - So Cal Edison" 6.63 129.11 28
    17 "San Fernando" 1971 "2516 Via Tejon PV" 6.61 55.2 54.2
    18 "San Fernando" 1971 "Carbon Canyon Dam" 6.61 61.79 18.9
    19 "San Fernando" 1971 "Castaic-Old Ridge Route" 6.61 22.63 16.8
    20 "San Fernando" 1971 "Fairmont Dam" 6.61 30.19 14.4
    下载: 导出CSV

    表  3  近场无脉冲型地震动

    Table  3.   Near-field non-pulse-like ground motion

    编号地震名称年份站台名称震级/级Rrup /kmT90%/s
    1"Imperial Valley-02"1935"El Centro Array #9"6.956.0924.2
    2"Hollister-02"1961"Hollister City Hall"5.518.0816.5
    3"Parkfield"1966"Cholame - Shandon Array #12"6.1917.6429
    4"Parkfield"1966"Cholame - Shandon Array #5"6.199.587.5
    5"Parkfield"1966"Cholame - Shandon Array #8"6.1912.913.1
    6"Managua_Nicaragua-01"1972"Managua_ ESSO"5.244.0610.6
    7"Hollister-03"1974"Hollister City Hall"5.179.3910.9
    8"Coyote Lake"1979"Coyote Lake Dam - Southwest Abutment"5.746.138.5
    9"Imperial Valley-06"1979"Calexico Fire Station"6.5310.4514.8
    10"Imperial Valley-06"1979"Cerro Prieto"6.5315.1936.4
    11"Imperial Valley-06"1979"Chihuahua"6.537.2924
    12"Imperial Valley-06"1979"Parachute Test Site"6.5312.6918.6
    13"Imperial Valley-07"1979"El Centro Array #5"5.0111.237
    14"Imperial Valley-07"1979"El Centro Array #6"5.0110.376.5
    15"Mammoth Lakes-02"1980"Mammoth Lakes H. S."5.699.123.9
    16"Mammoth Lakes-03"1980"Convict Creek"5.9112.436.3
    17"Mammoth Lakes-03"1980"Long Valley Dam (Downst)"5.9118.1312.4
    18"Mammoth Lakes-03"1980"Long Valley Dam (Upr L Abut)"5.9118.138.4
    19"Mammoth Lakes-061980"Fish & Game (FIS)"5.9412.935.1
    20"Westmorland"1981"Salton Sea Wildlife Refuge"5.97.839.1
    下载: 导出CSV

    表  4  近场脉冲型地震动

    Table  4.   Near-field pulse-like ground motion records

    编号 地震名称 年份 站台名称 震级/级 Rrup/km T90%/s
    1 "Coyote Lake" 1979 "Gilroy Array #2" 5.74 9.02 7.5
    2 "Coyote Lake" 1979 "Gilroy Array #3" 5.74 7.42 8.7
    3 "Coyote Lake" 1979 "Gilroy Array #4" 5.74 5.7 11
    4 "Imperial Valley-06" 1979 "Agrarias" 6.53 0.65 13.3
    5 "Imperial Valley-06" 1979 "Brawley Airport" 6.53 10.42 14.9
    6 "Imperial Valley-06" 1979 "EC County Center FF" 6.53 7.31 13.2
    7 "Imperial Valley-06" 1979 "El Centro Array #10" 6.53 8.6 12.8
    8 "Imperial Valley-06" 1979 "El Centro Array #3" 6.53 12.85 14.1
    9 "Imperial Valley-06" 1979 "Holtville Post Office" 6.53 7.5 12.8
    10 "Irpinia_ Italy-01" 1980 "Bagnoli Irpinio" 6.9 8.18 19.6
    11 "Irpinia_ Italy-01" 1980 "Sturno (STN)" 6.9 10.84 15.2
    12 "Westmorland" 1981 "Parachute Test Site" 5.9 16.66 18.7
    13 "Morgan Hill" 1984 "Gilroy Array #6" 6.19 9.87 7.3
    14 "Kalamata_ Greece-02" 1986 "Kalamata (bsmt) (2 nd trigger)" 5.4 5.6 2.9
    15 "Superstition Hills-02" 1987 "Kornbloom Road (temp)" 6.54 18.48 13.9
    16 "Loma Prieta" 1989 "Gilroy - Historic Bldg." 6.93 10.97 13.1
    17 "Loma Prieta" 1989 "Saratoga - W Valley Coll." 6.93 9.31 11.1
    18 "Kocaeli_ Turkey" 1999 "Arcelik" 7.51 13.49 11.1
    19 "Kocaeli_ Turkey" 1999 "Gebze" 7.51 10.92 8.2
    20 "Coyote Lake" 1979 "Gilroy Array #2" 5.74 9.02 7.5
    下载: 导出CSV

    表  5  自复位预制节段拼装CFDST桥墩抗震性能水准指标取值范围

    Table  5.   Range of performance level indexes of self-centering precast segmental CFDST pier

    性能等级性能水准耗能钢筋拉应变ε钢绞线拉应变εpθdrθR
    基本完好$ < {\varepsilon _{\text{y}}}$/<1.00 %/
    轻微损伤$ < {\varepsilon _{{\text{sh}}}} = 0.015$/<2.25%<0.50%
    可恢复损伤/生命安全$ < 0.6{\varepsilon _{{\text{su}}}} = 0.06$/<5.50%<1.00%
    严重损伤/防止倒塌$ < {\varepsilon _{{\text{su}}}} = 0.10$$ < {\varepsilon _{{\text{py}}}} = 0.0086$<8.50%<1.75%
    局部失效/倒塌$ > {\varepsilon _{{\text{su}}}} = 0.10$$ > {\varepsilon _{{\text{py}}}} = 0.0086$>8.50%>1.75%
    下载: 导出CSV

    表  6  桥墩概率地震需求模型

    Table  6.   Probabilistic earthquake demand model of pier

    性能指标 近场无脉冲地震 近场脉冲地震动 远场地震动
    墩顶最大水平位移角 ln(θdr) = 1.1468 ln(PGA)−3.8139 ln(θdr) = 1.21112 ln(PGA) −2.3137 ln(θdr) = 0.8328 ln(PGA) −2.8025
    墩顶残余位移角 ln(θR) = 1.7973 ln(PGA) −4.8048 ln(θR) = 1.8553 ln(PGA) −4.9436 ln(θR) = 1.4748 ln(PGA) −5.9554
    下载: 导出CSV
  • 董慧慧,李辉,杜修力,2023. 近场脉冲型地震动横向激励下附加SCEB双柱式桥墩结构易损性分析. 北京工业大学学报,49(5):532−546. doi: 10.11936/bjutxb2021110002

    Dong H. H., Li H., Du X. L., 2023. Fragility analysis of the double-column bent with the SCEB under near-field pulse-like ground motions in transverse direction. Journal of Beijing University of Technology, 49(5): 532−546. (in Chinese) doi: 10.11936/bjutxb2021110002
    葛继平,王志强,2011. 干接缝节段拼装桥墩振动台试验研究. 工程力学,28(9):122−128.

    Ge J. P., Wang Z. Q., 2011. Shake table tests of segmental bridge columns with match-cast dry joints. Engineering Mechanics, 28(9): 122−128. (in Chinese)
    何益斌,李毅,郭健等,2012. 中空夹层钢管混凝土柱与钢-混凝土组合梁节点抗震性能试验研究. 建筑结构学报,33(7):106−115.

    He Y. B., Li Y., Guo J., et al., 2012. Experimental study on seismic behavior of concrete-filled double skin steel tubular column and steel-concrete beam composite joints. Journal of Building Structures, 33(7): 106−115. (in Chinese)
    胡晓斌,贺慧高,2015. 强震下单自由度体系残余位移离散性研究. 地震工程与工程振动,35(6):213−218.

    Hu X. B., He H. G., 2015. Study on the dispersion of residual displacement of SDOF system under strong earthquake. Earthquake Engineering and Engineering Dynamics, 35(6): 213−218. (in Chinese)
    胡志坚,闫明辉,周知等,2022. 预制拼装桥墩地震易损性分析. 土木工程学报,55(1):89−99,108.

    Hu Z. J., Yan M. H., Zhou Z., et al., 2022. Seismic vulnerability analysis of precast segmental bridge piers. China Civil Engineering Journal, 55(1): 89−99,108. (in Chinese)
    贾晗曦,林均岐,刘金龙,2019. 建筑结构地震易损性分析研究综述. 震灾防御技术,14(1):42−51. doi: 10.11899/zzfy20190105

    Jia H. X., Lin J. Q., Liu J. L., 2019. Review of seismic fragility analysis of building structure. Technology for Earthquake Disaster Prevention, 14(1): 42−51. (in Chinese) doi: 10.11899/zzfy20190105
    贾俊峰,赵建瑜,张强等,2017. 后张预应力节段拼装CFST桥墩抗侧力学行为试验. 中国公路学报,30(3):236−245. doi: 10.3969/j.issn.1001-7372.2017.03.026

    Jia J. F., Zhao J. Y., Zhang Q., et al., 2017. Experiment on lateral bearing behavior of post-tensioned segmental CFST bridge pier columns. China Journal of Highway and Transport, 30(3): 236−245. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.026
    蒋欢军,王斌,吕西林,2010. 钢筋混凝土梁和柱性能界限状态及其变形限值. 建筑结构,40(1):10−14.

    Jiang H. J., Wang B., Lü X. L., 2010. Performance limit states and deformation limits of RC beams and columns. Building Structure, 40(1): 10−14. (in Chinese)
    李宁,张双城,李忠献等,2020. 预制拼装钢管混凝土自复位桥墩变形分析模型及验证. 工程力学,37(4):135−143.

    Li N., Zhang S. C., Li Z. X., et al., 2020. Deformation analysis model and validation for precast segmental concrete filed steel tube self-centering bridge column. Engineering Mechanics, 37(4): 135−143. (in Chinese)
    林上顺,厉良勇,叶世集等,2024. 采用混合连接装配式桥墩地震易损性分析. 地震工程学报,46(2):251−258,268.

    Lin S. S., Li L. Y., Ye S. J., et al., 2024. Seismic vulnerability analysis of assembled piers with a hybrid connection. China Earthquake Engineering Journal, 46(2): 251−258,268. (in Chinese)
    刘黎明,徐超,卜春尧等,2021. 双向水平地震动作用对某钢筋混凝土连续梁桥易损性的影响. 震灾防御技术,16(4):671−679. doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008

    Liu L. M., Xu C., Bu C. Y., et al., 2021. Influence of Bi-directional horizontal ground motion on the vulnerability of a reinforced concrete continuous beam bridge. Technology for Earthquake Disaster Prevention, 16(4): 671−679. (in Chinese) doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008
    刘艳辉,赵世春,强士中,2010. 城市高架桥抗震性能水准的量化. 西南交通大学学报,45(1):54−58,64. doi: 10.3969/j.issn.0258-2724.2010.01.009

    Liu Y. H., Zhao S. C., Qiang S. Z., 2010. Quantification of seismic performance levels for urban viaduct. Journal of Southwest Jiaotong University, 45(1): 54−58,64. (in Chinese) doi: 10.3969/j.issn.0258-2724.2010.01.009
    罗征,李建中,2013. 低周往复荷载下空心矩形墩抗震性能试验研究. 振动与冲击,32(8):183−188.

    Luo Z., Li J. Z., 2013. Tests for a seismic performance of rectangular hollow thin-walled bridge columns under low-cycle reversed loading. Journal of Vibration and Shock, 32(8): 183−188. (in Chinese)
    漆启明,邵长江,胡晨旭等,2020. 空心墩地震损伤评估及性能水准量化研究. 土木工程学报,53(11):116−128.

    Qi Q. M., Shao C. J., Hu C. X., et al., 2020. Study on seismic damage assessment and performance level quantification of hollow pier. China Civil Engineering Journal, 53(11): 116−128. (in Chinese)
    任文静,邱大鹏,张智等,2024. 考虑构件地震相关性的近海桥梁二维地震易损性分析. 震灾防御技术,19(1):96−107. doi: 10.11899/zzfy20240110

    Ren W. J., Qiu D. P., Zhang Z., et al., 2024. The two-dimensional seismic fragility analysis of the offshore bridge in considering the seismic correlation between different components. Technology for Earthquake Disaster Prevention, 19(1): 96−107. (in Chinese) doi: 10.11899/zzfy20240110
    石岩,张智超,李军等,2022. 考虑内力状态的大跨高墩连续刚构桥地震易损性分析. 地震研究,45(1):8−16.

    Shi Y., Zhang Z. C., Li J., et al., 2022. Seismic fragility of the long-span, continuous, rigid-frame bridge with high-rise pier involving the state of the internal force. Journal of Seismological Research, 45(1): 8−16. (in Chinese)
    司炳君,谷明洋,孙治国等,2017. 近断层地震动下摇摆-自复位桥墩地震反应分析. 工程力学,34(10):87−97. doi: 10.6052/j.issn.1000-4750.2016.05.0386

    Si B. J., Gu M. Y., Sun Z. G., et al., 2017. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions. Engineering Mechanics, 34(10): 87−97. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0386
    孙治国,赵泰儀,石岩等. 2019. 摇摆-自复位桥墩抗震性能数值建模方法研究. 应用基础与工程科学学报, 27 (6):1357−1369.

    Sun Z. G., Zhao T. Y., Shi Y., et al., 2019. Research on numerical modeling method for rocking self-centering bridge piers. Journal of Basic Science and Engineering, 27 (6): 1357−1369. (in Chinese)
    王军文,李海洋,闫聚考等,2018. 地震作用下钢筋混凝土桥墩残余位移研究. 振动与冲击,37(13):130−134.

    Wang J. W., Li H. Y., Yan J. K., et al., 2018. Residual displacements of RC piers under action of earthquake. Journal of Vibration and Shock, 37(13): 130−134. (in Chinese)
    王震,2018. 自复位预制拼装UHPC空心墩抗震性能及设计方法研究. 南京:东南大学.

    Wang Z., 2018. Research on seismic performance and design method of self-centering precast segmental UHPC hollow bridge piers. Nanjing:Southeast University. (in Chinese)
    魏标,2010. 典型非规则梁桥抗震设计理论. 上海:同济大学.

    Wei B., 2010. Seismic design theory of typical irregular continuous bridges. Shanghai:Tongji University. (in Chinese)
    许成祥,罗恒,王粘锦,2022. 双层高架桥框架式桥墩地震易损性分析. 重庆交通大学学报(自然科学版),41(8):95−101. doi: 10.3969/j.issn.1674-0696.2022.08.14

    Xu C. X., Luo H., Wang Z. J., 2022. Seismic fragility analysis of double-deck Viaducts’ Frame piers. Journal of Chongqing Jiaotong University (Natural Science), 41(8): 95−101. (in Chinese) doi: 10.3969/j.issn.1674-0696.2022.08.14
    曾武华,卓卫东,王东升,2021. RC桥墩残余位移指标影响因素分析及贝叶斯估计. 振动与冲击,40(19):145−150.

    Zeng W. H., Zhuo W. D., Wang D. S., 2021. Influence factors analysis and Bayesian estimation for residual displacement index of RC pier. Journal of Vibration and Shock, 40(19): 145−150. (in Chinese)
    张勤,贡金鑫,周继凯,2017. 基于概率的单自由度体系震后残余变形计算. 建筑结构学报,38(8):74−82.

    Zhang Q., Gong J. X., Zhou J. K., 2017. Seismic residual deformation analysis of single degree of freedom system based on probability. Journal of Building Structures, 38(8): 74−82. (in Chinese)
    张云,谭平,郑建勋等,2014. 基于性能的中小跨径装配式梁桥地震易损性分析. 振动工程学报,27(5):676−684. doi: 10.3969/j.issn.1004-4523.2014.05.005

    Zhang Y., Tan P., Zheng J. X., et al., 2014. Fragility analysis for performance-based seismic design of prefabricated bridge with middle-small span. Journal of Vibration Engineering, 27(5): 676−684. (in Chinese) doi: 10.3969/j.issn.1004-4523.2014.05.005
    赵建锋,孙伟帅,李刚,2018. 不同轴压比钢筋混凝土圆柱桥墩地震易损性分析. 世界地震工程,34(4):31−37.

    Zhao J. F., Sun W. S., Li G., 2018. Seismic vulnerability analysis of cylindrical RC bridge piers with different axial compression ratios. World Earthquake Engineering, 34(4): 31−37. (in Chinese)
    周雨龙,韩强,张劲泉等,2021. 消能自复位摇摆框架墩结构地震反应及易损性分析. 中国公路学报,34(11):153−164. doi: 10.3969/j.issn.1001-7372.2021.11.013

    Zhou Y. L., Han Q., Zhang J. Q., et al., 2021. Seismic response and fragility analysis of post-tensioned rocking bridge frames with dampers. China Journal of Highway and Transport, 34(11): 153−164. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.11.013
    Ahmadi E., Kocakaplan S., Kashani M. M., 2022. Nonlinear seismic fragility analysis of a resilient precast post-tensioned segmental bridge pier. Sustainable and Resilient Infrastructure, 7(6): 823−841. doi: 10.1080/23789689.2022.2082644
    Christopoulos C., Pampanin S., Priestley M. J. N., 2003. Performance-based seismic response of frame structures including residual deformations. Part I: single-degree of freedom systems. Journal of Earthquake Engineering, 7(1): 97−118.
    Dawood H., Elgawady M., Hewes J., 2014. Factors affecting the seismic behavior of segmental precast bridge columns. Frontiers of Structural and Civil Engineering, 8(4): 388−398. doi: 10.1007/s11709-014-0264-8
    Filippou F. C., Popov E. P., Bertero V. V., 1983. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints. Berkeley: Earthquake Engineering Research Center, University of California.
    Hewes J. T., Priestley M. J. N., 2002. Seismic design and performance of precast concrete segmental bridge columns. San Diego: University of California.
    Hose Y., Silva P., Seible F., 2000. Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads. Earthquake Spectra, 16(2): 413−442. doi: 10.1193/1.1586119
    Japan Road Association, 2002. Design specifications for highway bridges: part v: seismic design. Japan: Maruzen Publishing Co, Ltd.
    Kawashima K., MacRae G. A., Hoshikuma J. I., et al., 1998. Residual displacement response spectrum. Journal of Structural Engineering, 124(5): 523−530. doi: 10.1061/(ASCE)0733-9445(1998)124:5(523)
    Kent D. C., Park R., 1971. Flexural members with confined concrete. Journal of the Structural Division, 97(7): 1969−1990. doi: 10.1061/JSDEAG.0002957
    Kowalsky M. J., 2000. Deformation limit states for circular reinforced concrete bridge columns. Journal of Structural Engineering, 126(8): 869−878. doi: 10.1061/(ASCE)0733-9445(2000)126:8(869)
    Li Y. X., Li J. Z., Shen Y., 2021. Quasi-static and nonlinear time-history analyses of post-tensioned bridge rocking piers with internal ED bars. Structures, 32: 1455−1468. doi: 10.1016/j.istruc.2021.03.099
    Li Z. X., Du C. Y., Liang X., et al., 2023a. Experimental and numerical investigation on hysteretic behavior of posttensioned precast segmental Concrete-filled double skin steel tubular piers. Structures, 54: 1772−1787. doi: 10.1016/j.istruc.2023.05.128
    Li Z. X., Du C. Y., Liu D., et al., 2023b. Comparative study on seismic performance of concrete-filled double skin tubular piers and hollow concrete piers: experimental and analytical. Structures, 49: 1078−1092. doi: 10.1016/j.istruc.2022.11.116
    Luco N., Cornell C. A., 2000. Effects of connection fractures on SMRF seismic drift demands. Journal of Structural Engineering, 126(1): 127−136. doi: 10.1061/(ASCE)0733-9445(2000)126:1(127)
    Mander J. B., Priestley M. J. N., Park R., 1988. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8): 1804−1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    Mander J. B., Cheng C. T., 1997. Seismic resistance of bridge piers based on damage avoidance design. Buffalo: National Center for Earthquake Engineering Research, State University of New York.
    Mazzoni S., McKenna F., Scott M. H., et al., 2009. Open system for earthquake engineering simulation user command-language manual. version 2.0. Berkeley: Pacific Earthquake Engineering Research Center, University of California.
    Menegotto M., 1973. Method of analysis for cyclically loaded R. C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In: Proceedings of the IABSE Symposium on Resistance and Ultimate Deformablility of Structures Acted on by Well-Difined Repeated. 15−22.
    Muntasir Billah A. H. M., Shahria Alam M., 2015a. Seismic fragility assessment of highway bridges: a state-of-the-art review. Structure and Infrastructure Engineering, 11(6): 804−832. doi: 10.1080/15732479.2014.912243
    Muntasir Billah A. H. M., Shahria Alam M., 2015b. Seismic fragility assessment of concrete bridge pier reinforced with superelastic shape memory alloy. Earthquake Spectra, 31(3): 1515−1541. doi: 10.1193/112512EQS337M
    Ou Y. C., Wang P. H., Tsai M. S., et al., 2010. Large-scale experimental study of Precast segmental unbonded posttensioned concrete bridge columns for seismic regions. Journal of Structural Engineering, 136(3): 255−264. doi: 10.1061/(ASCE)ST.1943-541X.0000110
    Zhang Y. Y., Li Y. H., Fan W., et al., 2022. Seismic damage and assessment model analysis of prestressed segmental bridge columns. Structures, 38: 797−807. doi: 10.1016/j.istruc.2022.02.018
  • 期刊类型引用(3)

    1. 李中铭. 氯离子侵蚀作用下大跨度高墩刚构桥地震易损性分析. 福建交通科技. 2024(02): 31-35 . 百度学术
    2. 梁晓,姜浩然,李芳芳. 自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析. 震灾防御技术. 2024(03): 613-628 . 本站查看
    3. 许成祥,吴永康,王理. 外包钢套加固震损双层高架桥框架式桥墩抗震性能评估与参数分析. 震灾防御技术. 2023(04): 821-832 . 本站查看

    其他类型引用(2)

  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  43
  • PDF下载量:  24
  • 被引次数: 5
出版历程
  • 收稿日期:  2024-06-13
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

/

返回文章
返回