• ISSN 1673-5722
  • CN 11-5429/P

自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析

梁晓 姜浩然 李芳芳

花鑫升, 石金虎, 谭雅丽, 何银娟. 浅层地震勘探资料揭示汤东断裂特征[J]. 震灾防御技术, 2018, 13(2): 276-283. doi: 10.11899/zzfy20180203
引用本文: 梁晓,姜浩然,李芳芳,2024. 自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析. 震灾防御技术,19(3):613−628. doi:10.11899/zzfy20240319. doi: 10.11899/zzfy20240319
Hua Xinsheng, Shi Jinhu, Tan Yali, He Yinjuan. The Characteristics of the Tangdong Fault Revealed by Shallow Seismic Survey[J]. Technology for Earthquake Disaster Prevention, 2018, 13(2): 276-283. doi: 10.11899/zzfy20180203
Citation: Liang Xiao, Jiang Haoran, Li Fangfang. Seismic Fragility Analysis of Self-centering Precast Segmental Concrete-filled Double Skin Steel Tubular Piers[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 613-628. doi: 10.11899/zzfy20240319

自复位预制节段拼装中空夹层钢管混凝土桥墩地震易损性分析

doi: 10.11899/zzfy20240319
基金项目: 国家自然科学基金(52238012、52278515、52308519);天津市科技计划项目(23JCYBJC00750、23JCQNJC00910)
详细信息
    作者简介:

    梁晓,女,生于1987年。博士,副教授。主要从事工程结构抗震研究。E-mail:xliang@tcu.edu.cn

    通讯作者:

    李芳芳,女,生于1988年。博士。主要从事工程结构抗震研究。E-mail:fangfangbjut@126.com

Seismic Fragility Analysis of Self-centering Precast Segmental Concrete-filled Double Skin Steel Tubular Piers

  • 摘要: 为评估自复位预制节段拼装中空夹层钢管混凝土(Concrete-filled Double Skin Steel Tubular, CFDST)桥墩在地震动作用下的易损性,本研究基于现有的低周反复荷载试验数据,采用有限元分析方法,选用墩顶水平位移角和残余位移角2个指标作为评估标准进行定量分析。针对3种不同类型地震动(远场、近场无脉冲和近场有脉冲),分别建立了关于水平位移角和残余位移角2个指标的易损性曲线,并分析了不同损伤指标和地震动类型对其地震易损性的影响。研究结果表明,在自复位预制节段拼装CFDST桥墩地震易损性分析中,仅采用水平位移角作为损伤指标是安全可靠的;相比远场地震动和近场无脉冲型地震动而言,近场脉冲型地震动对自复位预制节段拼装CFDST桥墩的变形和自复位有显著影响。
  • 河西务断裂为河西务构造带的东部边界,也称河西务东断层或河西务东缘断层。河西务构造带是廊固凹陷主要的油气富集区,地震勘探和钻孔勘察程度较高。桂宝玲等(2011)对廊固凹陷的三维精细地质结构进行研究,认为廊固凹陷新生代以来经历了多期构造活动,河西务断裂为廊固凹陷内控带断层,对武清凹陷沙三段之后的沉积具有明显的控制作用。前人对河西务断裂带的断裂分段、平面特征、剖面特征、构造演化等方面都有研究(黄忠范,1992赵红格等,2003劳海港等,2010曾庆鲁,2010),从中,我们获得了河西务断裂由北向南分为3段,断裂上部断开第三系至第四系,深部具有右旋花状构造特征。前人的工作主要在油气勘探与预测研究方面,研究部位主要集中于富油构造层位,所关注的地层界面为新近系及以下层位;断裂的几何空间展布主要来自石油深部断点地表投影或次级构造单元划分边界。从活动断裂的角度来看,我们更关心该断裂在近地表的精确几何展布及活动特征,但这一方面很少有人涉足或涉足不深,研究成果较为少见。

    河西务断裂距离廊坊市城区最近仅6km,断裂的第四纪活动特征与地震、地质灾害密切相关。本文通过对廊坊市活断层探测资料的系统分析,综合浅层地震勘探、钻孔联合剖面探测和地层年龄数据等资料,确定了断裂的活动时代、活动速率等参数,以期为地震预测与灾害预防、工程稳定性与地震安全性评价、土地利用与城市规划以及雄安新区建设服务。

    河西务断裂位于廊固凹陷的东坡,是控制廊固凹陷和武清凹陷的分界断裂,两者在始新世—渐新世早中期属于统一的断陷盆地;到渐新世晚期,廊固凹陷与武清凹陷逐渐开始分离;在新近纪初两者才彻底分离成2个独立的凹陷。渐新世晚期,河西务断裂发生强烈的张性右旋走滑运动,导致武清凹陷发生强烈沉降和接收沉积物,断层上盘有完整的古近系,厚达5000—6000m,其下为古生界;下盘地层较薄,古近系厚约3000m,之下为古生界。河西务断层错断了新近系顶面,造成千米左右的落差,说明该断裂新近纪时期强烈活动。第四纪以来,河西务断裂继续活动,控制着武清凹陷的发育,致使武清凹陷成为冀中坳陷的沉降中心,第四系厚度超过400m(王少春等,2011)。河西务断裂向北延伸与桐柏断裂小角度相交(范强等,2017),向南延伸与牛东断裂、高阳-博野断裂断续相接,构成了华北平原区内部1条规模巨大的北东向断裂构造带(图 1)。河西务断裂上曾经发生过多次中强或小地震,其中,1511年河北霸县5½级地震发生在断裂南端,1536年北京通县5½级地震发生在断裂北端,1621年永清东北5½级地震发生在断裂中段。2018年2月12日永清4.3级地震距离河西务断裂最近,几乎就在断裂上,震源机制解显示该地震的可能发震构造为河西务断裂,具有右旋正断性质(王晓山等,2018)。

    图 1  研究区构造位置
    Figure 1.  Tectonic location of the study area
    F1:河西务断裂;F2:牛东断裂;F3:高阳-博野断裂;F4:老河头断裂;F5:徐水南断裂;F6:大兴凸起东缘断裂F7:大兴凸起西缘断裂;F8:夏垫断裂;F9:太行山山前断裂;F10:宝坻断裂;F11:桐柏断裂;F12:沧东断裂

    河西务断裂北起河西务西北,向西南经大王务,延至永清东码头镇,全长约50km,走向北东,倾向南东,倾角40°—60°。断裂由北向南分为3段,分别称为河西务断层、大北尹断层及别古庄断层,北段长15km,走向NE50°,倾角65°;中段长22.5km,走向NE35°,倾角50°;南段长15km,走向NE50°,倾角70°(劳海港等,2010)。该断裂断错基底古生代地层,是廊固凹陷与武清凹陷的分界,与其它断层组构成河西务构造带。断层组呈雁行斜列排布,受北北东向的河西务断裂控制,并与之斜交。主断层、伴生断层组及次级伴生构造轴向的平面排布关系表明,河西务地区构造为扭动构造组合,是深层右旋扭动的结果,断裂带宽达2—4km。杨承先等(2011)指出这种花状结构是走滑断裂的特征,这一性质可由主断层下降盘附近地层的强烈拖曳变形而非同沉积结构所反映。这种右旋性质与古近纪以来右旋张剪区域应力场相一致。

    地震勘探显示河西务断裂主断层呈近直立状(图 2),与构造带内其它断裂构成花状结构(黄忠范,1992赵红格,2000)。地震剖面显示,断裂下部断至基底反射波以下,上部断开古近系至第四系的反射波,分别切穿了T2、T5、T6和Tg地层(地震反射界面,T2为新近系底界,T5为沙二段底界,T6为沙三段底界,Tg为古近系底界),主要控制沙二—沙一段沉积,主断层两侧的伴生断层呈叠瓦状向上朝两侧撒开,成为地堑型断块的边界,并逐渐消失在浅部反射层中。主断层深部的落差比浅层的落差大,浅层受断裂影响的形变区的宽度大于深层,呈锥状外形,与岩石底部剪切应力作用所形成的破裂区一致。

    图 2  LF-511、LF-313和WA-623人工地震地质解释剖面(据赵红格,2000)
    Figure 2.  LF-511, LF-313 and WA-623 seismic interpretation sections (Zhao Hongge, 2000)

    浅层地震勘探是河西务断裂探测的主要手段,我们根据河西务断裂附近以往地质和地球物理探测等资料进行综合分析,判断河西务断裂近地表的空间展布,并进行测线布设。其中,测线LF04X长503m,方向为北西—南东,使用美国GEOMETRICS公司STRATAVISOR-NZXP地震仪进行地震勘探数据的采集,采用70kg冲击夯源进行地震波激发,观测系统为单边72道接收、最小偏移距12m、道间距2m、炮间距6m(12次覆盖),采样间隔0.25ms,记录长度0.7s,多个检波器组合接收。根据勘探任务、地质特点和资料特征,制订处理流程,确定处理参数,并使用专业处理软件进行数据处理,包括格式转换、道编辑、静校正、数值滤波、动校正、速度扫描、水平叠加等内容,获得了有效的地震反射时间剖面。

    图 3是LF04X测线经过数据处理后得到的地震反射时间及地质解释剖面。在地震反射时间剖面500ms以上的范围内,呈现丰富的地层界面反射波组,根据各反射波组特征及波组之间的相互关系,在剖面上共解释了7组近水平的地层界面反射。根据测线附近钻孔(京8、京2、务1、务3等)资料及时深转换结果,发现T0、T2、T3、T4波组分别对应Q4、Q3、Q2、Q1地层的底界面。T4和T3反射能量呈现时强时弱特点,反映出第四系沉积在横向上的差异变化(也可能与震源能量不足有关);T2反射能量较强,反射波振幅均衡,震相特征明显,同相轴连续性较好,双程反射时间为170—180ms,时深转换后T2的埋深为160—170m;T0反射波同相轴连续性好,双程反射时间为50—60ms,埋深30m左右。

    图 3  LF04X地震勘探反射时间及地质解释剖面
    Figure 3.  Profile of stack time of seismic reflection and the interpretation along LF04X

    根据剖面上各反射波同相轴的横向变化特征和上下反射波组关系,在剖面上解释了1个断点F,第四系底界面的断距为20—45m,上断点位于CDP285、双程反射时间160ms,为倾向东南的正断层,错断了Q3底界面反射波组T2,而未错断Q3内部的反射波组T1。需要指出的是,在CDP300左侧,断层F上盘可以解释1条近直立的次级反向正断层,其上断点更浅(100m以浅)。

    钻孔联合剖面场地位于廊坊市城区东南部冶炼厂附近,第四纪地层厚度较大,发育于较为完整的盆地中部,为湖相沉积相,由浅湖相、深湖相、滨湖及其过渡相交替构成。岩性主要以不同颜色的粘土、粉砂质粘土、泥质粉砂和粉砂为主,其次为中砂和细砂,并组成频率较高的互层和旋回层,代表性钻孔在钻遇的241m地层中包含全新统、上更新统和中更新统,尚未见砾石和砂砾,沉积物中夹杂有较多的钙质结核,标志层不太显著。钻孔地层底界划分如表 1所示。

    表 1  冶炼厂场地各孔分段深度表(单位:m)
    Table 1.  Depth of holes in the site of metallurgical plant (Unit: m)
    地层时代 钻孔编号
    LY-3 LY-1 LY-4 LY-2
    全新统(Q4) 28.2 27.2 27.8 27.4
    上更新统(Q3) 169.1 168.5 172.6 172.9
    中更新统(Q2,未见底) 241.1 241.0 243.9 244.5
    下载: 导出CSV 
    | 显示表格

    划分依据介绍如下:

    (1) 全新统:以黄灰色、灰色为主,砂与粘土互层,底界为1套薄层灰色泥质粉砂,厚约0.5—1m,4个钻孔有较好的一致性。依据地层颜色、岩性、旋回特性与测年数据,综合控制性钻孔的划分与对比等确定其层位,4个钻孔底界深度平均为27.7m。全新统与下伏更新统上部为整合接触。

    (2) 上更新统:可分为上、中、下3套和若干旋回。从沉积物的颜色、岩性和沉积旋回分析,上更新统底界是重要的转换面,界面以上以灰色、深灰色、黄绿色为主,部分黄褐色,岩性以粘土、粉砂质粘土、泥质粉砂、粉砂、细砂为主,部分中砂,界面以下总体为黄褐色和灰褐色。本段共获得15个热释光测年数据(35.07±2.98ka— 136.47±15.01ka),主要分布于Q3的中部和下部,所测年龄整体上随地层深度的增加逐渐变老,主要数据能控制主要层段的层位与界面,结合地层的岩性特征和沉积旋回结构,综合控制性钻孔的划分与对比等,确定4个钻孔Q3底界平均为170.8m。

    (3) 中更新统(未见底):以褐灰色、黄褐色、杂色粘土、粉砂质粘土、泥质粉砂、粉砂、细砂为主,部分中砂。本段共获得11个热释光测年数据(132.48±11.26ka—209.73±23.07ka),其中LY-1孔的测年数据(132.48±11.26ka、155.60±17.11ka、168.97±18.58ka、181.76± 19.99ka)和LY-4孔的测年数据(154.77±17.02ka、156.26±17.19ka、175.21±19.27ka、209.73±23.07ka)标定了更新统中部层位。

    对钻孔联合剖面(图 4)进行对比分析,发现钻孔LY-1和LY-4之间确实存在断点,上断点埋深116.9—146.2m。断裂西侧钻孔YL-3、YL-1在深150—170m层段(Q31)以粘土为主,东侧钻孔YL-4、YL-2以砂层为主,反映了断裂两侧的地层沉积差异。YL-1钻孔底部标志层深229.9m,钻孔LY-4标志层深241.9m,标志层为灰色的粉砂质粘土,在断点两侧的落差为12m。具体分析如下:

    图 4  河西务断裂钻孔联合剖面综合解释图
    Figure 4.  Correlation of drilling sections around the Hexiwu fault

    (1) 全新统(Q4):底界深度为26.3—28.2m,埋深基本一致,没有断错迹象。

    (2) 上更新统(Q3):底界深度为168.5—172.9m,断点两侧钻孔的底界深度分别为168.5m和172.6m。在层深147—172m层段(Q31),东(上)盘以砂层为主,西(下)盘以粘土为主,底界断距约4.1m。

    (3) B1层:为灰色、黄灰色粉砂、细砂,含铁质结核和云母,有浅灰色粘土互层或泥质条带,厚3—5m。断层西侧以细砂为主,东侧以粉细砂或粘土质粉砂为主,断距约3.7m。

    (4) B2层:为1套灰黄色细砂、中砂层,厚约4—5m,层上或层下为颗粒相对细小的粉砂或粘土层。断层西侧以灰黄色细砂、泥质粉砂、粉砂质粘土为主,含泥质条带和炭质条带,见锈斑和钙质结核;断层东侧以灰黄色细砂、中砂为主,夹薄层粘土层,见锈斑,厚4m。YL-1孔B2层底界深168.5m,YL-4钻孔B1层底界深172.6m,断错约4.1m。

    (5) 中更新统(Q2):中上部在深约170—240m地层的标志层和重要旋回层的底界面有断错现象,自上而下各界面分别称为B3、B4、B5、B6、B7,深度相差依次为8.6m、8.7m、10.7m、11.9m和12.0m,自上到下错距逐渐变大。

    (6) B3层:为1套灰色中细砂,厚约2—3m。断层西侧YL-1钻孔为厚2.6m的灰色中细砂,底界深度为174.3m,底部含有磨圆较好的砾石,与YL-3钻孔同性状砂层厚度、深度相当。断层东侧2个钻孔砂层厚度与YL-1、YL-3相当,但埋深较深,YL-4钻孔B2层底界深约182.7m,断层两侧断错约8.6m。

    (7) B4层:为1套灰色中细砂、粉砂,厚约5—6m。断裂西侧钻孔YL-1、YL-3层位一致性较好,钻孔YL-1层厚约5.4m,底界深约188.1m。断裂东侧钻孔LY-4、LY-2层位厚度、埋深一致性较好,钻孔LY-4层厚约5.5m,B3层底界深约196.8m。断层两侧断错约8.7m。

    (8) B5层:为1套灰色粉砂、泥质粉砂,厚约4m。断裂西侧钻孔YL-1层厚约4m,底界深约208.3m,含有铁质锈斑和炭质条纹,中部偶见钙质结核断裂东侧钻孔。LY-4层厚约4.2m,底界深约219m。断层两侧断错约10.7m。

    (9) B6层:为1套灰黄色细砂、粉砂,厚约2m。断裂西侧钻孔YL-1层厚约2.4m,黄灰色细砂,有粘土夹层,含白云母,偶见钙质结核,底界深约222.9m。断裂东侧LY-4为粉砂,层厚约2.3m,底界深约234.8m。断层两侧断错约11.9m。

    (10) B7层:为1套灰黄色泥质粉砂,厚约1.6m。断裂西侧钻孔YL-1层厚约2.4m,为灰黄色泥质粉砂,含泥质条带,底部偶见钙质结核,底界深约229.9m。断裂东侧钻孔YL-4层厚约2.4m,为灰绿色泥质粉砂,底界深约241.9m。断层两侧断错约12.0m。

    浅层地震勘探发现河西务断裂在地下浅部有明显的反映。由于浅层地震探测分辨率有限,其探测结果显示的断裂上断点埋深往往与断裂的实际上断点有所偏差,因此,采用钻孔联合剖面探测、浅层地震勘探及地层年代测试进行对比分析。

    将钻孔与浅层地震勘探结果对比可以看出,断点两侧钻孔约150m以下层位均有断错迹象,特别是170m以下断错迹象更为明显(图 34)。地震剖面与钻孔联合剖面结果一致,断裂位于钻孔LY-1与LY-4之间,上断点埋深约150m(或更浅)。

    根据地层年代测试结果,上升盘LY-1孔145.2m处的热释光样品年龄为115.42±9.81ka,163m处的热释光样品年龄为126.58±10.76ka;下降盘LY-4孔154.16m处的热释光样品年龄为111.18±9.45ka,161.18m处的热释光样品年龄为128.64±10.93ka。这些数据表明河西务断裂最新活动时代应该在115.42±9.81ka—126.58±10.76ka之后,属于晚更新世早期。

    由钻孔地层对比可知,河西务断裂上断点埋深150m以浅,晚更新世以来标志层B1、B2错断,B1位于153—157m,断距3.7m,B2位于168—172m,断距4.1m,B2底界也为晚更新统底界,如认为断裂晚更新世以来仍持续活动,据此推测河西务断裂晚更新世以来的平均垂直滑动速率为0.03mm/a。中更新统多个标志层发生错断,B3、B4、B5、B6、B7从上到下断距逐渐增大,断距分别为8.6m、8.7m、10.7m、11.9m、12.0m。最大断距12m没有下限年龄限制,因此无法计算滑动速率。次大断距11.9m位于孔深222.9—234.9m之间,以LY-4孔234.8m处的热释光样品年龄(209.73±23.07ka)为年龄下限值,晚更新世晚期以来断裂垂直活动较弱,以100ka为年龄上限,11.9m断距在109ka时间内的滑动速率为0.11mm/a,其可代表河西务断裂中更新世晚期的平均垂直滑动速率。上述断裂垂直断距及滑动速率显示,河西务断裂主要活动时代为中更新世及以前,晚更新世早期垂直活动减弱,从地震剖面倾角上陡下缓推测晚更新世以来断裂活动性质可能发生转变,由早期以垂直活动为主转为晚期以走滑活动为主。

    冀中凹陷区河西务断裂活动被巨厚的第四系沉积层覆盖,仅采用地表地质调查手段很难获取断点准确的空间位置、上断点埋深及最新活动时代。本文通过浅层地震勘探和钻孔联合剖面探测,结合钻孔样品年代测试结果,分析了河西务断裂的第四纪活动性质及活动特征。

    河西务断裂走向北东,倾向南东,视倾角50°—65°,向北延伸与廊固凹陷内横向断层(桐柏断裂)小角度相接,向南延伸与牛东断裂相接,为冀中凹陷内1条规模巨大的北东向构造带。断层错断了下更新统、中更新统和上更新统底部,上断点埋深为150m以浅,第四系底界面的断距为20—45m,晚更新世以来平均垂直滑动速率为0.03mm/a,中更新世晚期以来平均垂直滑动速率为0.11mm/a。

    本文的研究结果局限于廊坊市活断层探测目标区内的河西务断裂,因此后续还需要对其它段落进行深入的综合研究。

    致谢: 文中所用的浅层地震勘探资料和钻孔探测资料来自廊坊市活动断层探测项目,对该项目的其他参与人员表示衷心感谢。
  • 图  1  自复位预制节段拼装CFDST桥墩构造示意图

    Figure  1.  Diagram of self-centering precast segmental assembled CFDST pier

    图  2  试件截面尺寸(单位:毫米)

    Figure  2.  Cross-sectional dimension of specimen (Unit: mm)

    图  3  自复位预制节段拼装CFDST桥墩数值模型

    Figure  3.  Numerical model of self-centering precast segmental assembled CFDST pier

    图  4  滞回曲线(Li等,2023b

    Figure  4.  Hysteretic curve of self-centering precast segmental assembled CFDST piers (Li et al., 2023b

    图  5  基于最大水平位移角的地震概率需求模型

    Figure  5.  Earthquake probability demand model base on maximum horizontal displacement angle

    图  6  基于残余位移角的地震概率需求模型

    Figure  6.  Earthquake probability demand model base on residual displacement angle

    图  7  基于最大墩顶水平位移角指标的易损性曲线

    Figure  7.  Vulnerability curve based on the maximum horizontal displacement angle of pier top

    图  8  基于墩顶残余位移角指标的易损性曲线

    Figure  8.  Vulnerability curve based on the residual displacement angle of pier top

    图  9  近场无脉冲地震动作用下基于不同损伤指标的易损性曲线

    Figure  9.  Vulnerability curves based on different damage indexes under near-field non-pulse-like ground motion

    图  10  近场脉冲地震动作用下基于不同损伤指标的易损性曲线

    Figure  10.  Vulnerability curves based on different damage indexes under near-field pulse-like ground motion

    图  11  远场地震动作用下基于不同损伤指标的易损性曲线

    Figure  11.  Vulnerability curves based on different damage indexes under far-field ground motion

    图  12  基于最大水平位移角的自复位预制节段拼装CFDST桥墩地震易损性曲线

    Figure  12.  Self-centering precast segmental CFDST pier vulnerability curves based on the maximum horizontal displacement angle under earthquake ground motions

    图  13  基于残余位移角的自复位预制节段拼装CFDST桥墩地震易损性曲线

    Figure  13.  Self-centering precast segmental CFDST pier vulnerability curves based on the residual displacement angle under earthquake ground motions

    表  1  关键性能指标

    Table  1.   Critical performance indexes

    屈服位移/mm 屈服荷载/kN 峰值荷载/kN 弹性刚度/(kN·mm−1) 峰值残余位移/mm
    试验 17.8 208 319 11.7 30.0
    模拟 18.0 216 308 12.0 31.8
    相对误差 1.1% 3.8% 3.4% 2.6% 6.0%
    下载: 导出CSV

    表  2  远场地震动记录

    Table  2.   Far-field ground motion records

    编号 地震名称 年份 站台名称 震级/级 Rrup/km T90%/s
    1 "Northwest Calif-01" 1938 "Ferndale City Hall" 5.5 53.58 11.6
    2 "Northwest Calif-02" 1941 "Ferndale City Hall" 6.6 91.22 22.2
    3 "Northern Calif-01" 1941 "Ferndale City Hall" 6.4 44.68 15.5
    4 "Borrego" 1942 "El Centro Array #9" 6.5 56.88 37.2
    5 "Northwest Calif-03" 1951 "Ferndale City Hall" 5.8 53.77 15.4
    6 "Kern County" 1952 "LA - Hollywood Stor FF" 7.36 117.75 33.5
    7 "Kern County" 1952 "Pasadena - CIT Athenaeum" 7.36 125.59 29.5
    8 "Kern County" 1952 "Santa Barbara Courthouse" 7.36 82.19 33.6
    9 "Kern County" 1952 "Taft Lincoln School" 7.36 38.89 30.3
    10 "Northern Calif-02" 1952 "Ferndale City Hall" 5.2 43.28 18.4
    11 "Northern Calif-03" 1954 "Ferndale City Hall" 6.5 27.02 19.4
    12 "El Alamo" 1956 "El Centro Array #9" 6.8 121.7 40.9
    13 "Northern Calif-04" 1960 "Ferndale City Hall" 5.7 57.21 28.4
    14 "Northern Calif-05" 1967 "Ferndale City Hall" 5.6 28.73 22.1
    15 "Borrego Mtn" 1968 "El Centro Array #9" 6.63 45.66 49.3
    16 "Borrego Mtn" 1968 "San Onofre - So Cal Edison" 6.63 129.11 28
    17 "San Fernando" 1971 "2516 Via Tejon PV" 6.61 55.2 54.2
    18 "San Fernando" 1971 "Carbon Canyon Dam" 6.61 61.79 18.9
    19 "San Fernando" 1971 "Castaic-Old Ridge Route" 6.61 22.63 16.8
    20 "San Fernando" 1971 "Fairmont Dam" 6.61 30.19 14.4
    下载: 导出CSV

    表  3  近场无脉冲型地震动

    Table  3.   Near-field non-pulse-like ground motion

    编号地震名称年份站台名称震级/级Rrup /kmT90%/s
    1"Imperial Valley-02"1935"El Centro Array #9"6.956.0924.2
    2"Hollister-02"1961"Hollister City Hall"5.518.0816.5
    3"Parkfield"1966"Cholame - Shandon Array #12"6.1917.6429
    4"Parkfield"1966"Cholame - Shandon Array #5"6.199.587.5
    5"Parkfield"1966"Cholame - Shandon Array #8"6.1912.913.1
    6"Managua_Nicaragua-01"1972"Managua_ ESSO"5.244.0610.6
    7"Hollister-03"1974"Hollister City Hall"5.179.3910.9
    8"Coyote Lake"1979"Coyote Lake Dam - Southwest Abutment"5.746.138.5
    9"Imperial Valley-06"1979"Calexico Fire Station"6.5310.4514.8
    10"Imperial Valley-06"1979"Cerro Prieto"6.5315.1936.4
    11"Imperial Valley-06"1979"Chihuahua"6.537.2924
    12"Imperial Valley-06"1979"Parachute Test Site"6.5312.6918.6
    13"Imperial Valley-07"1979"El Centro Array #5"5.0111.237
    14"Imperial Valley-07"1979"El Centro Array #6"5.0110.376.5
    15"Mammoth Lakes-02"1980"Mammoth Lakes H. S."5.699.123.9
    16"Mammoth Lakes-03"1980"Convict Creek"5.9112.436.3
    17"Mammoth Lakes-03"1980"Long Valley Dam (Downst)"5.9118.1312.4
    18"Mammoth Lakes-03"1980"Long Valley Dam (Upr L Abut)"5.9118.138.4
    19"Mammoth Lakes-061980"Fish & Game (FIS)"5.9412.935.1
    20"Westmorland"1981"Salton Sea Wildlife Refuge"5.97.839.1
    下载: 导出CSV

    表  4  近场脉冲型地震动

    Table  4.   Near-field pulse-like ground motion records

    编号 地震名称 年份 站台名称 震级/级 Rrup/km T90%/s
    1 "Coyote Lake" 1979 "Gilroy Array #2" 5.74 9.02 7.5
    2 "Coyote Lake" 1979 "Gilroy Array #3" 5.74 7.42 8.7
    3 "Coyote Lake" 1979 "Gilroy Array #4" 5.74 5.7 11
    4 "Imperial Valley-06" 1979 "Agrarias" 6.53 0.65 13.3
    5 "Imperial Valley-06" 1979 "Brawley Airport" 6.53 10.42 14.9
    6 "Imperial Valley-06" 1979 "EC County Center FF" 6.53 7.31 13.2
    7 "Imperial Valley-06" 1979 "El Centro Array #10" 6.53 8.6 12.8
    8 "Imperial Valley-06" 1979 "El Centro Array #3" 6.53 12.85 14.1
    9 "Imperial Valley-06" 1979 "Holtville Post Office" 6.53 7.5 12.8
    10 "Irpinia_ Italy-01" 1980 "Bagnoli Irpinio" 6.9 8.18 19.6
    11 "Irpinia_ Italy-01" 1980 "Sturno (STN)" 6.9 10.84 15.2
    12 "Westmorland" 1981 "Parachute Test Site" 5.9 16.66 18.7
    13 "Morgan Hill" 1984 "Gilroy Array #6" 6.19 9.87 7.3
    14 "Kalamata_ Greece-02" 1986 "Kalamata (bsmt) (2 nd trigger)" 5.4 5.6 2.9
    15 "Superstition Hills-02" 1987 "Kornbloom Road (temp)" 6.54 18.48 13.9
    16 "Loma Prieta" 1989 "Gilroy - Historic Bldg." 6.93 10.97 13.1
    17 "Loma Prieta" 1989 "Saratoga - W Valley Coll." 6.93 9.31 11.1
    18 "Kocaeli_ Turkey" 1999 "Arcelik" 7.51 13.49 11.1
    19 "Kocaeli_ Turkey" 1999 "Gebze" 7.51 10.92 8.2
    20 "Coyote Lake" 1979 "Gilroy Array #2" 5.74 9.02 7.5
    下载: 导出CSV

    表  5  自复位预制节段拼装CFDST桥墩抗震性能水准指标取值范围

    Table  5.   Range of performance level indexes of self-centering precast segmental CFDST pier

    性能等级性能水准耗能钢筋拉应变ε钢绞线拉应变εpθdrθR
    基本完好$ < {\varepsilon _{\text{y}}}$/<1.00 %/
    轻微损伤$ < {\varepsilon _{{\text{sh}}}} = 0.015$/<2.25%<0.50%
    可恢复损伤/生命安全$ < 0.6{\varepsilon _{{\text{su}}}} = 0.06$/<5.50%<1.00%
    严重损伤/防止倒塌$ < {\varepsilon _{{\text{su}}}} = 0.10$$ < {\varepsilon _{{\text{py}}}} = 0.0086$<8.50%<1.75%
    局部失效/倒塌$ > {\varepsilon _{{\text{su}}}} = 0.10$$ > {\varepsilon _{{\text{py}}}} = 0.0086$>8.50%>1.75%
    下载: 导出CSV

    表  6  桥墩概率地震需求模型

    Table  6.   Probabilistic earthquake demand model of pier

    性能指标 近场无脉冲地震 近场脉冲地震动 远场地震动
    墩顶最大水平位移角 ln(θdr) = 1.1468 ln(PGA)−3.8139 ln(θdr) = 1.21112 ln(PGA) −2.3137 ln(θdr) = 0.8328 ln(PGA) −2.8025
    墩顶残余位移角 ln(θR) = 1.7973 ln(PGA) −4.8048 ln(θR) = 1.8553 ln(PGA) −4.9436 ln(θR) = 1.4748 ln(PGA) −5.9554
    下载: 导出CSV
  • 董慧慧,李辉,杜修力,2023. 近场脉冲型地震动横向激励下附加SCEB双柱式桥墩结构易损性分析. 北京工业大学学报,49(5):532−546. doi: 10.11936/bjutxb2021110002

    Dong H. H., Li H., Du X. L., 2023. Fragility analysis of the double-column bent with the SCEB under near-field pulse-like ground motions in transverse direction. Journal of Beijing University of Technology, 49(5): 532−546. (in Chinese) doi: 10.11936/bjutxb2021110002
    葛继平,王志强,2011. 干接缝节段拼装桥墩振动台试验研究. 工程力学,28(9):122−128.

    Ge J. P., Wang Z. Q., 2011. Shake table tests of segmental bridge columns with match-cast dry joints. Engineering Mechanics, 28(9): 122−128. (in Chinese)
    何益斌,李毅,郭健等,2012. 中空夹层钢管混凝土柱与钢-混凝土组合梁节点抗震性能试验研究. 建筑结构学报,33(7):106−115.

    He Y. B., Li Y., Guo J., et al., 2012. Experimental study on seismic behavior of concrete-filled double skin steel tubular column and steel-concrete beam composite joints. Journal of Building Structures, 33(7): 106−115. (in Chinese)
    胡晓斌,贺慧高,2015. 强震下单自由度体系残余位移离散性研究. 地震工程与工程振动,35(6):213−218.

    Hu X. B., He H. G., 2015. Study on the dispersion of residual displacement of SDOF system under strong earthquake. Earthquake Engineering and Engineering Dynamics, 35(6): 213−218. (in Chinese)
    胡志坚,闫明辉,周知等,2022. 预制拼装桥墩地震易损性分析. 土木工程学报,55(1):89−99,108.

    Hu Z. J., Yan M. H., Zhou Z., et al., 2022. Seismic vulnerability analysis of precast segmental bridge piers. China Civil Engineering Journal, 55(1): 89−99,108. (in Chinese)
    贾晗曦,林均岐,刘金龙,2019. 建筑结构地震易损性分析研究综述. 震灾防御技术,14(1):42−51. doi: 10.11899/zzfy20190105

    Jia H. X., Lin J. Q., Liu J. L., 2019. Review of seismic fragility analysis of building structure. Technology for Earthquake Disaster Prevention, 14(1): 42−51. (in Chinese) doi: 10.11899/zzfy20190105
    贾俊峰,赵建瑜,张强等,2017. 后张预应力节段拼装CFST桥墩抗侧力学行为试验. 中国公路学报,30(3):236−245. doi: 10.3969/j.issn.1001-7372.2017.03.026

    Jia J. F., Zhao J. Y., Zhang Q., et al., 2017. Experiment on lateral bearing behavior of post-tensioned segmental CFST bridge pier columns. China Journal of Highway and Transport, 30(3): 236−245. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.026
    蒋欢军,王斌,吕西林,2010. 钢筋混凝土梁和柱性能界限状态及其变形限值. 建筑结构,40(1):10−14.

    Jiang H. J., Wang B., Lü X. L., 2010. Performance limit states and deformation limits of RC beams and columns. Building Structure, 40(1): 10−14. (in Chinese)
    李宁,张双城,李忠献等,2020. 预制拼装钢管混凝土自复位桥墩变形分析模型及验证. 工程力学,37(4):135−143.

    Li N., Zhang S. C., Li Z. X., et al., 2020. Deformation analysis model and validation for precast segmental concrete filed steel tube self-centering bridge column. Engineering Mechanics, 37(4): 135−143. (in Chinese)
    林上顺,厉良勇,叶世集等,2024. 采用混合连接装配式桥墩地震易损性分析. 地震工程学报,46(2):251−258,268.

    Lin S. S., Li L. Y., Ye S. J., et al., 2024. Seismic vulnerability analysis of assembled piers with a hybrid connection. China Earthquake Engineering Journal, 46(2): 251−258,268. (in Chinese)
    刘黎明,徐超,卜春尧等,2021. 双向水平地震动作用对某钢筋混凝土连续梁桥易损性的影响. 震灾防御技术,16(4):671−679. doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008

    Liu L. M., Xu C., Bu C. Y., et al., 2021. Influence of Bi-directional horizontal ground motion on the vulnerability of a reinforced concrete continuous beam bridge. Technology for Earthquake Disaster Prevention, 16(4): 671−679. (in Chinese) doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008
    刘艳辉,赵世春,强士中,2010. 城市高架桥抗震性能水准的量化. 西南交通大学学报,45(1):54−58,64. doi: 10.3969/j.issn.0258-2724.2010.01.009

    Liu Y. H., Zhao S. C., Qiang S. Z., 2010. Quantification of seismic performance levels for urban viaduct. Journal of Southwest Jiaotong University, 45(1): 54−58,64. (in Chinese) doi: 10.3969/j.issn.0258-2724.2010.01.009
    罗征,李建中,2013. 低周往复荷载下空心矩形墩抗震性能试验研究. 振动与冲击,32(8):183−188.

    Luo Z., Li J. Z., 2013. Tests for a seismic performance of rectangular hollow thin-walled bridge columns under low-cycle reversed loading. Journal of Vibration and Shock, 32(8): 183−188. (in Chinese)
    漆启明,邵长江,胡晨旭等,2020. 空心墩地震损伤评估及性能水准量化研究. 土木工程学报,53(11):116−128.

    Qi Q. M., Shao C. J., Hu C. X., et al., 2020. Study on seismic damage assessment and performance level quantification of hollow pier. China Civil Engineering Journal, 53(11): 116−128. (in Chinese)
    任文静,邱大鹏,张智等,2024. 考虑构件地震相关性的近海桥梁二维地震易损性分析. 震灾防御技术,19(1):96−107. doi: 10.11899/zzfy20240110

    Ren W. J., Qiu D. P., Zhang Z., et al., 2024. The two-dimensional seismic fragility analysis of the offshore bridge in considering the seismic correlation between different components. Technology for Earthquake Disaster Prevention, 19(1): 96−107. (in Chinese) doi: 10.11899/zzfy20240110
    石岩,张智超,李军等,2022. 考虑内力状态的大跨高墩连续刚构桥地震易损性分析. 地震研究,45(1):8−16.

    Shi Y., Zhang Z. C., Li J., et al., 2022. Seismic fragility of the long-span, continuous, rigid-frame bridge with high-rise pier involving the state of the internal force. Journal of Seismological Research, 45(1): 8−16. (in Chinese)
    司炳君,谷明洋,孙治国等,2017. 近断层地震动下摇摆-自复位桥墩地震反应分析. 工程力学,34(10):87−97. doi: 10.6052/j.issn.1000-4750.2016.05.0386

    Si B. J., Gu M. Y., Sun Z. G., et al., 2017. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions. Engineering Mechanics, 34(10): 87−97. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0386
    孙治国,赵泰儀,石岩等. 2019. 摇摆-自复位桥墩抗震性能数值建模方法研究. 应用基础与工程科学学报, 27 (6):1357−1369.

    Sun Z. G., Zhao T. Y., Shi Y., et al., 2019. Research on numerical modeling method for rocking self-centering bridge piers. Journal of Basic Science and Engineering, 27 (6): 1357−1369. (in Chinese)
    王军文,李海洋,闫聚考等,2018. 地震作用下钢筋混凝土桥墩残余位移研究. 振动与冲击,37(13):130−134.

    Wang J. W., Li H. Y., Yan J. K., et al., 2018. Residual displacements of RC piers under action of earthquake. Journal of Vibration and Shock, 37(13): 130−134. (in Chinese)
    王震,2018. 自复位预制拼装UHPC空心墩抗震性能及设计方法研究. 南京:东南大学.

    Wang Z., 2018. Research on seismic performance and design method of self-centering precast segmental UHPC hollow bridge piers. Nanjing:Southeast University. (in Chinese)
    魏标,2010. 典型非规则梁桥抗震设计理论. 上海:同济大学.

    Wei B., 2010. Seismic design theory of typical irregular continuous bridges. Shanghai:Tongji University. (in Chinese)
    许成祥,罗恒,王粘锦,2022. 双层高架桥框架式桥墩地震易损性分析. 重庆交通大学学报(自然科学版),41(8):95−101. doi: 10.3969/j.issn.1674-0696.2022.08.14

    Xu C. X., Luo H., Wang Z. J., 2022. Seismic fragility analysis of double-deck Viaducts’ Frame piers. Journal of Chongqing Jiaotong University (Natural Science), 41(8): 95−101. (in Chinese) doi: 10.3969/j.issn.1674-0696.2022.08.14
    曾武华,卓卫东,王东升,2021. RC桥墩残余位移指标影响因素分析及贝叶斯估计. 振动与冲击,40(19):145−150.

    Zeng W. H., Zhuo W. D., Wang D. S., 2021. Influence factors analysis and Bayesian estimation for residual displacement index of RC pier. Journal of Vibration and Shock, 40(19): 145−150. (in Chinese)
    张勤,贡金鑫,周继凯,2017. 基于概率的单自由度体系震后残余变形计算. 建筑结构学报,38(8):74−82.

    Zhang Q., Gong J. X., Zhou J. K., 2017. Seismic residual deformation analysis of single degree of freedom system based on probability. Journal of Building Structures, 38(8): 74−82. (in Chinese)
    张云,谭平,郑建勋等,2014. 基于性能的中小跨径装配式梁桥地震易损性分析. 振动工程学报,27(5):676−684. doi: 10.3969/j.issn.1004-4523.2014.05.005

    Zhang Y., Tan P., Zheng J. X., et al., 2014. Fragility analysis for performance-based seismic design of prefabricated bridge with middle-small span. Journal of Vibration Engineering, 27(5): 676−684. (in Chinese) doi: 10.3969/j.issn.1004-4523.2014.05.005
    赵建锋,孙伟帅,李刚,2018. 不同轴压比钢筋混凝土圆柱桥墩地震易损性分析. 世界地震工程,34(4):31−37.

    Zhao J. F., Sun W. S., Li G., 2018. Seismic vulnerability analysis of cylindrical RC bridge piers with different axial compression ratios. World Earthquake Engineering, 34(4): 31−37. (in Chinese)
    周雨龙,韩强,张劲泉等,2021. 消能自复位摇摆框架墩结构地震反应及易损性分析. 中国公路学报,34(11):153−164. doi: 10.3969/j.issn.1001-7372.2021.11.013

    Zhou Y. L., Han Q., Zhang J. Q., et al., 2021. Seismic response and fragility analysis of post-tensioned rocking bridge frames with dampers. China Journal of Highway and Transport, 34(11): 153−164. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.11.013
    Ahmadi E., Kocakaplan S., Kashani M. M., 2022. Nonlinear seismic fragility analysis of a resilient precast post-tensioned segmental bridge pier. Sustainable and Resilient Infrastructure, 7(6): 823−841. doi: 10.1080/23789689.2022.2082644
    Christopoulos C., Pampanin S., Priestley M. J. N., 2003. Performance-based seismic response of frame structures including residual deformations. Part I: single-degree of freedom systems. Journal of Earthquake Engineering, 7(1): 97−118.
    Dawood H., Elgawady M., Hewes J., 2014. Factors affecting the seismic behavior of segmental precast bridge columns. Frontiers of Structural and Civil Engineering, 8(4): 388−398. doi: 10.1007/s11709-014-0264-8
    Filippou F. C., Popov E. P., Bertero V. V., 1983. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints. Berkeley: Earthquake Engineering Research Center, University of California.
    Hewes J. T., Priestley M. J. N., 2002. Seismic design and performance of precast concrete segmental bridge columns. San Diego: University of California.
    Hose Y., Silva P., Seible F., 2000. Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads. Earthquake Spectra, 16(2): 413−442. doi: 10.1193/1.1586119
    Japan Road Association, 2002. Design specifications for highway bridges: part v: seismic design. Japan: Maruzen Publishing Co, Ltd.
    Kawashima K., MacRae G. A., Hoshikuma J. I., et al., 1998. Residual displacement response spectrum. Journal of Structural Engineering, 124(5): 523−530. doi: 10.1061/(ASCE)0733-9445(1998)124:5(523)
    Kent D. C., Park R., 1971. Flexural members with confined concrete. Journal of the Structural Division, 97(7): 1969−1990. doi: 10.1061/JSDEAG.0002957
    Kowalsky M. J., 2000. Deformation limit states for circular reinforced concrete bridge columns. Journal of Structural Engineering, 126(8): 869−878. doi: 10.1061/(ASCE)0733-9445(2000)126:8(869)
    Li Y. X., Li J. Z., Shen Y., 2021. Quasi-static and nonlinear time-history analyses of post-tensioned bridge rocking piers with internal ED bars. Structures, 32: 1455−1468. doi: 10.1016/j.istruc.2021.03.099
    Li Z. X., Du C. Y., Liang X., et al., 2023a. Experimental and numerical investigation on hysteretic behavior of posttensioned precast segmental Concrete-filled double skin steel tubular piers. Structures, 54: 1772−1787. doi: 10.1016/j.istruc.2023.05.128
    Li Z. X., Du C. Y., Liu D., et al., 2023b. Comparative study on seismic performance of concrete-filled double skin tubular piers and hollow concrete piers: experimental and analytical. Structures, 49: 1078−1092. doi: 10.1016/j.istruc.2022.11.116
    Luco N., Cornell C. A., 2000. Effects of connection fractures on SMRF seismic drift demands. Journal of Structural Engineering, 126(1): 127−136. doi: 10.1061/(ASCE)0733-9445(2000)126:1(127)
    Mander J. B., Priestley M. J. N., Park R., 1988. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8): 1804−1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    Mander J. B., Cheng C. T., 1997. Seismic resistance of bridge piers based on damage avoidance design. Buffalo: National Center for Earthquake Engineering Research, State University of New York.
    Mazzoni S., McKenna F., Scott M. H., et al., 2009. Open system for earthquake engineering simulation user command-language manual. version 2.0. Berkeley: Pacific Earthquake Engineering Research Center, University of California.
    Menegotto M., 1973. Method of analysis for cyclically loaded R. C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In: Proceedings of the IABSE Symposium on Resistance and Ultimate Deformablility of Structures Acted on by Well-Difined Repeated. 15−22.
    Muntasir Billah A. H. M., Shahria Alam M., 2015a. Seismic fragility assessment of highway bridges: a state-of-the-art review. Structure and Infrastructure Engineering, 11(6): 804−832. doi: 10.1080/15732479.2014.912243
    Muntasir Billah A. H. M., Shahria Alam M., 2015b. Seismic fragility assessment of concrete bridge pier reinforced with superelastic shape memory alloy. Earthquake Spectra, 31(3): 1515−1541. doi: 10.1193/112512EQS337M
    Ou Y. C., Wang P. H., Tsai M. S., et al., 2010. Large-scale experimental study of Precast segmental unbonded posttensioned concrete bridge columns for seismic regions. Journal of Structural Engineering, 136(3): 255−264. doi: 10.1061/(ASCE)ST.1943-541X.0000110
    Zhang Y. Y., Li Y. H., Fan W., et al., 2022. Seismic damage and assessment model analysis of prestressed segmental bridge columns. Structures, 38: 797−807. doi: 10.1016/j.istruc.2022.02.018
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  43
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-13
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

/

返回文章
返回