Seismic Isolation Design and Effectiveness Analysis of Prefabricated Cabins in Modular Substations
-
摘要: 变电站属于生命线工程,某模块化变电站的一次设备预制舱底部设有钢构架,舱内设备单列布置,有必要研究并提升这种带钢构架预制舱结构及设备的抗震性能。首先,采用有限元软件ABAQUS进行地震作用下非隔震结构的非线性时程分析;然后,对该工程进行隔震设计并对比了隔震结构和非隔震结构的地震响应;最后,考虑钢构架刚度和隔震支座位置2个因素,在隔震结构的基础上进行参数化分析。结果表明,相较于非隔震结构,经设计的隔震结构延长了结构基本周期,在地震作用下具有较好的加速度和位移控制效果;针对本文选取的研究对象,钢构架截面采用H140结构会通过钢构架变形耗散地震能量,隔震支座不能充分发挥作用;相比于隔震支座布置于柱顶结构,布置于柱底结构具有更好的设备加速度和舱体位移控制效果,然而隔震支座会出现拉力。因此,建议此类结构隔震设计时,隔震支座的下部钢构架应具备一定刚度(当构架上部舱体重量为25 t时,底部构架刚度建议不小于
3615 kN/m),隔震支座位置需综合考虑隔震支座受力和隔震效果。Abstract: Substations are considered as lifeline infrastructure, and modular substations feature a steel frame at the base of the prefabricated cabin for primary equipment, with equipment arranged in a single row inside the cabin. The seismic performance of both the steel-framed prefabricated cabin structure and the equipment within it needs thorough investigation and improvement. In this study, a nonlinear time-history analysis of the non-isolated structure under seismic loading was conducted using the finite element software ABAQUS. Following this, a seismic isolation design was implemented, and the seismic responses of both isolated and non-isolated structures were compared. Additionally, a parametric analysis was performed on the isolated structure, considering factors such as steel frame stiffness and the location of the seismic isolation bearings. The results indicate that the seismic isolation design effectively extends the fundamental period of the structure and provides improved control of both acceleration and displacement during seismic events, compared to the non-isolated structure. For the structure analyzed in this paper, a steel frame with an H140 cross-section dissipates seismic energy primarily through deformation, limiting the effectiveness of the isolation bearings. Furthermore, seismic isolation bearings positioned at the bottom of the column demonstrate better control over equipment acceleration and cabin displacement compared to those placed at the top. However, tensile forces may develop in the isolation bearings at the bottom. Therefore, it is recommended that the steel frame at the base of the isolation bearing have adequate stiffness (with a suggested stiffness of no less than 3 615 kN/m when the upper compartment weighs 25 tons). Additionally, the position of the isolation bearings should be selected carefully, considering both the forces acting on the bearings and their impact on the overall seismic isolation performance of the structure. -
表 1 预制舱结构材料属性
Table 1. Structural material properties of prefabricated cabin
材料 弹性模量
/(N·mm−2)泊松比 屈服强度
/MPa屈服后
刚度比/%密度
/(kg·m−3)Q235 2.1×105 0.3 235 1 7850 设备 2.1×105 0.3 — — 499 表 2 地震波基本参数
Table 2. Basic parameters of ground motions
地震动ID(编号) 地震事件 年份 记录台站 震级 PGA/g 时间间隔/s 持时/s PEER RSN 558 (1) Chalfant Valley-02 1986 Zack Brothers Ranch 6.19 0.447 0.005 39.995 PEER RSN 762 (2) Loma Prieta 1989 Fremont - Mission San Jose 6.93 0.127 0.005 39.99 PEER RSN 1082 (3) Northridge-01 1994 Sun Valley - Roscoe Blvd 6.69 0.277 0.01 30.28 PEER RSN 4139 (4) Parkfield-02, CA 2004 PARKFIELD - UPSAR 02 6 0.173 0.005 60 PEER RSN 5797 (5) Iwate 2008 Oomagari Hanazono-cho, Daisen 6.9 0.115 0.01 60 CSMNC RSN 20100 (6) Wenchuan Earthquake 2008 051 FSB 8 0.032 0.005 276 CSMNC RSN 23504 (7) Menyuan Earthquake 2016 063 ZMS 6.4 0.001 0.005 71 表 3 隔震支座力学参数
Table 3. Mechanical parameters of isolation bearing
型号 有效直径/mm 竖向总刚度/(kN·mm−1) 100%等效水平刚度/(kN·mm−1) 屈服前刚度/(kN·mm−1) 屈服后刚度/(kN·mm−1) 屈服力/kN LNR 200 200 325 288 — — — LRB 200 200 476.8 543 3002 300 10 表 4 设备最不利点处峰值放大系数αi和峰值加速度减震系数βiso
Table 4. Peak absolute acceleration and peak amplification factor at the most unfavorable point of non-isolation structure
地震动ID 非隔震结构 隔震结构 aPGA/ g aMAX/ g αnon aPGA/ g aMAX/ g αiso βiso/ % PEER RSN 558 (1) 0.4 1.395 3.488 0.4 0.408 1.019 70.791 PEER RSN 762 (2) 0.4 1.372 3.429 0.4 0.532 1.330 61.207 PEER RSN 1082 (3) 0.4 1.700 4.250 0.4 0.535 1.337 68.550 PEER RSN 4139 (4) 0.4 1.695 4.238 0.4 0.490 1.226 71.067 PEER RSN 5797 (5) 0.4 1.257 3.142 0.4 0.525 1.313 58.207 CSMNC RSN 20100 (6) 0.4 1.358 3.394 0.4 0.420 1.049 69.100 CSMNC RSN 23504 (7) 0.4 1.546 3.865 0.4 0.340 0.850 77.998 平均值 0.4 1.475 3.687 0.4 0.464 1.161 68.131 表 5 参数化模型信息
Table 5. Information of parametric models
模型 钢构架梁柱截面尺寸 隔震支座布置形式 标准 H200 居中布置于柱顶 A H140 居中布置于柱顶 B H400 居中布置于柱顶 C H200 外侧布置于柱顶 D H200 居中布置于柱底 -
陈永盛,姜冰,朱柏洁等,2022. 某典型二次设备预制舱地震反应时程分析. 建筑结构,52(S1):868−873.Chen Y. S., Jiang B., Zhu B. J., et al., 2022. Seismic response time history analyses of a typical prefabricated cabin for secondary combination device. Building Structure, 52(S1): 868−873. (in Chinese) 种迅,郭宇菲,沙慧玲等,2024. 基础隔震-外挂墙板减震钢筋混凝土框架振动台试验研究. 工程力学,41(7):176−185.Chong X., Guo Y. F., Sha H. L., et al., 2024. Shaking table test of reinforced concrete frame structure with base seismic isolation-energy dissipative cladding panel hybrid control. Engineering Mechanics, 41(7): 176−185. (in Chinese) 丁阳,邓恩峰,宗亮等,2018. 模块化集装箱建筑波纹钢板剪力墙抗震性能试验研究. 建筑结构学报,39(12):110−118.Ding Y., Deng E. F., Zong L., et al., 2018. Experimental study on seismic performance of corrugated steel plate shear wall in modular container construction. Journal of Building Structures, 39(12): 110−118. (in Chinese) 窦辉,殷帅兵,王哲等,2019. 模块化预制舱设计与研究. 科技视界,(22):1−4,20.Dou H., Yin S. B., Wang Z., et al., 2019. Design and study of modular prefabricated tank. Science & Technology Vision, (22): 1−4,20. (in Chinese) 李世权,2019. 钢模块波纹板墙体抗侧性能及设计方法研究. 天津:天津大学.Li S. Q., 2019. Research on anti-side performance and design method of steel module corrugated board wall. Tianjin:Tianjin University. (in Chinese) 林文静,2021. 基于模块化技术的智能变电站设计. 济南:山东大学.Lin W. J., 2021. Design of intelligent substation based on modularization technology. Ji’nan:Shandong University. (in Chinese) 刘如山,刘金龙,颜冬启等,2013. 芦山7.0级地震电力设施震害调查分析. 自然灾害学报,22(5):83−90.Liu R. S., Liu J. L., Yan D. Q., et al., 2013. Seismic damage investigation and analysis of electric power system in Lushan M S7.0 earthquake. Journal of Natural Disasters, 22(5): 83−90. (in Chinese) 卢乐乐,2020. 基础隔震房屋结构的地震损伤与抗震性能分析. 太原:太原理工大学.Lu L. L., 2020. Earthquake damage and seismic performance analysis of base isolated building structure. Taiyuan:Taiyuan University of Technology. (in Chinese) 莫素敏,2020. 海南中部地区模块化智能变电站方案研究与设计. 广州:华南理工大学.Mo S. M., 2020. Research and design of modular intelligent substation in central Hainan province. Guangzhou:South China University of Technology. (in Chinese) 聂建春,张振,王安等,2018. 智能变电站预制舱在内蒙古地区的环境适应性分析. 内蒙古电力技术,36(2):6−10,15.Nie J. C., Zhang Z., Wang A., et al., 2018. Environmental adaptability analysis on intelligent substation prefabricated cabin in Inner Mongolia. Inner Mongolia Electric Power, 36(2): 6−10,15. (in Chinese) 王化杰,李洋,雷炎祥等,2017. 装配式集装箱结构体系优化及节点性能. 哈尔滨工业大学学报,49(6):117−123.Wang H. J., Li Y., Lei Y. X., et al., 2017. System optimization of fabricated container structure and the joint performance. Journal of Harbin Institute of Technology, 49(6): 117−123. (in Chinese) 王伟,刘笑天,2023. 装配式工业设备支架复合隔震结构振动台试验研究. 建筑结构学报,44(10):15−25.Wang W., Liu X. T., 2023. Shaking table test on hybrid isolation system of prefabricated industrial equipment supports. Journal of Building Structures, 44(10): 15−25. (in Chinese) 王文渊,张同亿,2018. ABAQUS在超高层结构动力弹塑性分析的应用研究. 建筑结构,48(21):1−8,77.Wang W. Y., Zhang T. Y., 2018. Application study on ABAQUS in dynamic elasto-plastic analysis of super high-rise buildings. Building Structure, 48(21): 1−8,77. (in Chinese) 吴从晓,杨渊,吴从永等,2019. 集装箱装配建筑减震结构及连接节点抗震性能分析研究. 钢结构,34(4):1−8,73.Wu C. X., Yang Y., Wu C. Y., et al., 2019. Research on seismic behavior analysis of shock absorbing structure and connecting joints of container assembly structures. Steel Construction, 34(4): 1−8,73. (in Chinese) 吴从晓,杨渊,陈展鹏等,2020. 箱体改造后的模块化集装箱建筑减震结构性能分析. 工程抗震与加固改造,42(5):94−105.Wu C. X., Yang Y., Chen Z. P., et al., 2020. Performance analysis of shock absorbing structure of modular container building after container reconstruction. Earthquake Resistant Engineering and Retrofitting, 42(5): 94−105. (in Chinese) 于永清,李光范,李鹏等,2008. 四川电网汶川地震电力设施受灾调研分析. 电网技术,32(11):T1−T6.Yu Y. Q., Li G. F., Li P., et al., 2008. Investigation and analysis of electric equipment damage in Sichuan power grid caused by Wenchuan earthquake. Power System Technology, 32(11): T1−T6. (in Chinese) 查晓雄,左洋,刘乐等,2015. 地震作用下集装箱结构力学性能分析. 华南理工大学学报(自然科学版),43(7):92−99.Zha X. X., Zuo Y., Liu L., et al., 2015. Analysis of mechanical properties of container structure under earthquake action. Journal of South China University of Technology (Natural Science Edition), 43(7): 92−99. (in Chinese) 祝德春,吴明,2016. 环境载荷下智能变电站预制舱结构强度有限元分析. 机械与电子,34(10):30−33,37.Zhu D. C., Wu M., 2016. Finite element analysis of structural strength of precast chamber for smart substation under environment load. Machinery & Electronics, 34(10): 30−33,37. (in Chinese) Zha X. X., Zuo Y., 2016. Theoretical and experimental studies on in-plane stiffness of integrated container structure. Advances in Mechanical Engineering, 8 (3): 1687814016637522. DOI: https://doi.org/10.1177/1687814016637522.