Seismic Response and Vibration Control of 220 kV Single Pole SF6 Circuit Breaker
-
摘要: 变电站瓷柱类电气设备抗震性能较为薄弱,尤其是各电压等级的断路器不仅功能性强,价格昂贵,头部质量还重,地震易损性极高。建立了220 kV单极SF6断路器及支架体系的有限元模型,开展断路器地震响应分析和抗震性能研究,评估了断路器及支架结构体系关键部位的地震响应特点。强震作用下断路器灭弧室顶部的加速度、位移响应较大,瓷柱根部应力超过现行规范要求,抗震性能不足。为提高断路器的抗震能力,对断路器进行减震控制,分别在支架底部、中间和顶部设置减震器,减震元件力学模型为双线性模型。对有、无设置减震器的断路器地震响应进行对比分析,结果表明,3种减震器布置方案对断路器都有不错的减震效果支架顶部方案最好,中部方案次之。考虑实际工程中在支架顶部布置减震器有一定的难度,可将减震器布置在支架中部。Abstract: The seismic performance of substation porcelain column-type electrical equipment is relatively weak, particularly for circuit breakers across various voltage levels. These circuit breakers are not only crucial and costly but also have a significant head mass, making them highly vulnerable to seismic activity. To address this, a finite element model of a 220 kV single-pole SF6 circuit breaker and bracket system was developed to analyze its seismic response and assess its seismic performance. The study evaluated the seismic response characteristics of key components within the circuit breaker and bracket structure. The analysis revealed that the acceleration and displacement at the top of the circuit breaker interrupter chamber are significant under strong seismic action, and the stress at the base of the ceramic column exceeds the limits specified by current standards. As a result, the seismic performance of the circuit breaker is deemed insufficient. To enhance its seismic capacity, damping controls were introduced at the bottom, middle, and top of the bracket using shock absorbers. The mechanical model of the damping element followed a bilinear approach. A comparative analysis of the seismic response of the circuit breaker, both with and without dampers, showed that all three damper arrangements had a beneficial impact on reducing seismic vulnerability. Among these, the top-of-bracket arrangement proved to be the most effective, followed by the middle arrangement. However, due to practical difficulties in installing shock absorbers at the top of the bracket in real-world applications, the middle arrangement can be considered as a viable alternative.
-
表 1 断路器及支架结构的主要材料参数
Table 1. Main material parameters of circuit breaker and support structure
项目 格构式支架 瓷柱及灭弧室 材料 Q235钢 陶瓷 密度/(t·mm−1) 7.85×10−9 2.3×10−9 弹性模量/MPa 2.06×105 6.77×104 泊松比 0.3 0.32 表 2 断路器前6阶模态振型及频率
Table 2. Mode shapes and frequencies of the first six orders of the circuit breakers
振型阶数 频率/Hz 振型描述 第1阶 1.37 沿z轴正向的一阶振型 第2阶 1.42 沿x轴正向的一阶振型 第3阶 5.95 钢支架的扭转振型 第4阶 28.33 支柱沿z轴负向x轴正向,钢支架z轴正向的振型 第4阶 28.70 支柱沿z轴负向x轴负向的振型,钢支架沿x轴正向的振型 第6阶 30.48 钢支架支撑板向上凸起的振型 表 3 断路器顶部加速度响应及其放大系数
Table 3. The acceleration response at the top of the circuit breaker and its amplification factor
地震波 El Centro波 人工波 共振拍波 测点位置/方向 x向 x向 x向 输入加速度峰值/g 0.40 0.40 0.40 断路器顶部加速度/g 1.69 1.98 2.83 加速度放大系数 4.25 4.95 7.08 表 4 断路器瓷柱根部应力及其安全系数
Table 4. Stress and safety factor at the root of the circuit breakers porcelain column
地震波 瓷柱根部应力/MPa 安全系数 El Centro波 28.47 1.40 人工波 39.25 1.02 共振拍波 55.26 0.72 表 5 有、无增设减震器的断路器自振频率(单位:赫兹)
Table 5. Self-oscillation frequency of circuit breakers with and without additional dampers (Unit:Hz)
振型阶数 未增设减震器 增设减震器 方案A 方案B 方案C 第1阶 1.37 1.33 1.29 1.28 第2阶 1.42 1.39 1.33 1.31 第3阶 5.95 5.62 5.30 5.13 第4阶 28.33 28.20 28.07 27.94 第5阶 28.70 28.69 28.62 28.59 第6阶 30.48 30.41 30.32 30.30 表 6 地震作用下有、无增设减震器的断路器相对位移响应 (单位:毫米)
Table 6. Relative displacement response of circuit breakers with and without additional dampers under seismic actions (Unit:mm)
地震波 未增设减震器 增设减震器 方案A 方案B 方案C El Centro波 98.7 118.6 109.83 105.1 人工波 117.2 146.5 133.4 129.8 共振拍波 162.24 241.13 192.51 184.3 -
卜云,高传海,李文芳等,2021. 大数据架构下电力系统风险评估. 电网与清洁能源, 37 (1):77−83.Bu Y., Gao C. H., Li W. F., et al., 2021. Power system risk assessment based on big data. Power System and Clean Energy, 37 (1): 77−83. (in Chinese) 丁璨,丁奕灵,袁召等,2021. 160 kV机械式直流断路器抗震特性分析. 广东电力,34(12):104−110. doi: 10.3969/j.issn.1007-290X.2021.012.014Ding C., Ding Y. L., Yuan Z., et al., 2021. Anti-seismic analysis of 160 kV mechanical DC circuit breaker. Guangdong Electric Power, 34(12): 104−110. (in Chinese) doi: 10.3969/j.issn.1007-290X.2021.012.014 范荣全,曹枚根,卓越等,2012. 高压断路器抗震能力分析及抗震减震措施. 高压电器,48(3):12−16,20.Fan R. Q., Cao M. G., Zhuo Y., et al., 2012. Analysis on aseismic capacity of high voltage breaker and aseismic measures. High Voltage Apparatus, 48(3): 12−16,20. (in Chinese) 陆杨,王昊,周欢等,2018. 基于地震模拟振动台的高压断路器抗震分析. 上海电力学院学报,34(3):303−308.Lu Y., Wang H., Zhou H., et al., 2018. Seismic analysis of high voltage circuit breaker based on seismic simulation test bench. Journal of Shanghai University of Electric Power, 34(3): 303−308. (in Chinese) 文劲宇,周博,魏利屾,2022. 中国未来电力系统储电网初探. 电力系统保护与控制,50(7):1−10.Wen J. Y., Zhou B., Wei L. S., 2022. Preliminary study on an energy storage grid for future power system in China. Power System Protection and Control, 50(7): 1−10. (in Chinese) 翁智敏,朱振山,温步瀛等,2021. 高比例新能源电力系统研究综述. 电器与能效管理技术,(11):1−7.Weng Z. M., Zhu Z. S., Wen B. Y., et al., 2021. Review of power system with high proportion of renewable energy. Electrical & Energy Management Technology, (11): 1−7. (in Chinese) 尤红兵,赵凤新,2013. 芦山7.0级地震及电力设施破坏原因分析. 电力建设,34(8):100−104. doi: 10.3969/j.issn.1000-7229.2013.08.019You H. B., Zhao F. X., 2013. M 7.0 earthquake in Lushan and damage cause analysis of power facilities. Electric Power Construction, 34(8): 100−104. (in Chinese) doi: 10.3969/j.issn.1000-7229.2013.08.019 张大长,赵文伯,刘明源,2009. 5·12汶川地震中电力设施震害情况及其成因分析. 南京工业大学学报(自然科学版),31(1):44−48. doi: 10.3969/j.issn.1671-7627.2009.01.008Zhang D. C., Zhao W. B., Liu M. Y., 2009. Analysis on seismic disaster damage cases and their causes of electric power equipment in 5·12 Wenchuan earthquake. Journal of Nanjing University of Technology (Natural Science Edition), 31(1): 44−48. (in Chinese) doi: 10.3969/j.issn.1671-7627.2009.01.008 朱罡,王茂春,2020. 含新能源发电的电力系统状态估计研究. 电网与清洁能源,36(4):32−40,47.Zhu G., Wang M. C., 2020. Review on state estimation for power system containing renewable energy generation. Power System and Clean Energy, 36(4): 32−40,47. (in Chinese) 朱秋楠,谭盛武,韩峰等,2019. 1100 kV柱式断路器地震模拟振动台抗震试验研究. 高压电器,55(7):47−55.Zhu Q. N., Tan S. W., Han F., et al., 2019. Research on seismic test of seismic simulated shaking table for 1100 kV column circuit breaker. High Voltage Apparatus, 55(7): 47−55. (in Chinese) Alessandri S., Giannini R., Paolacci F., et al., 2015. Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 2: shaking-table test validation. Engineering Structures, 98: 263−274. Selvam R. P., Gupta Y., 2019. Seismic performance of high voltage composite insulator circuit breaker. Power Research - A Journal of CPRI, 14(2): 162−168. doi: 10.33686/pwj.v14i2.144094 Xie Q., Zhu R. Y., 2011. Earth, wind, and ice. IEEE Power and Energy Magazine, 9(2): 28−36. doi: 10.1109/MPE.2010.939947 Zareei S. A., Hosseini M., Ghafory-Ashtiany M., 2017. The role of equipment in seismic risk of power substations. Proceedings of the Institution of Civil Engineers-Energy, 170(4): 150−162. doi: 10.1680/jener.16.00017