• ISSN 1673-5722
  • CN 11-5429/P

220 kV单极SF6断路器地震响应与减震控制

曹枚根 夏祥泰

曹枚根,夏祥泰,2024. 220 kV单极SF6断路器地震响应与减震控制. 震灾防御技术,19(3):578−587. doi:10.11899/zzfy20240316. doi: 10.11899/zzfy20240316
引用本文: 曹枚根,夏祥泰,2024. 220 kV单极SF6断路器地震响应与减震控制. 震灾防御技术,19(3):578−587. doi:10.11899/zzfy20240316. doi: 10.11899/zzfy20240316
Cao Meigen, Xia Xiangtai. Seismic Response and Vibration Control of 220 kV Single Pole SF6 Circuit Breaker[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 578-587. doi: 10.11899/zzfy20240316
Citation: Cao Meigen, Xia Xiangtai. Seismic Response and Vibration Control of 220 kV Single Pole SF6 Circuit Breaker[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 578-587. doi: 10.11899/zzfy20240316

220 kV单极SF6断路器地震响应与减震控制

doi: 10.11899/zzfy20240316
详细信息
    作者简介:

    曹枚根,男,生于1975年。博士,研究员。主要从事电力设施振动控制与防灾减灾技术研究。E-mail:314613692@qq.com

Seismic Response and Vibration Control of 220 kV Single Pole SF6 Circuit Breaker

  • 摘要: 变电站瓷柱类电气设备抗震性能较为薄弱,尤其是各电压等级的断路器不仅功能性强,价格昂贵,头部质量还重,地震易损性极高。建立了220 kV单极SF6断路器及支架体系的有限元模型,开展断路器地震响应分析和抗震性能研究,评估了断路器及支架结构体系关键部位的地震响应特点。强震作用下断路器灭弧室顶部的加速度、位移响应较大,瓷柱根部应力超过现行规范要求,抗震性能不足。为提高断路器的抗震能力,对断路器进行减震控制,分别在支架底部、中间和顶部设置减震器,减震元件力学模型为双线性模型。对有、无设置减震器的断路器地震响应进行对比分析,结果表明,3种减震器布置方案对断路器都有不错的减震效果支架顶部方案最好,中部方案次之。考虑实际工程中在支架顶部布置减震器有一定的难度,可将减震器布置在支架中部。
  • 图  1  断路器结构外形及有限元模型(单位:毫米)

    Figure  1.  Circuit breaker structural shape and finite element model(Unit:mm)

    图  2  断路器前4阶振型

    Figure  2.  The first four modes of the Circuit breaker

    图  3  共振拍波

    Figure  3.  Resonant beat wave

    图  4  3条地震波x向加速度反应谱与场地需求谱的对比

    Figure  4.  Comparison of three seismic acceleration response spectrums in the x direction and site demand spectrum

    图  5  PGA=0.4 g单向输入断路器加速度反应包络曲线

    Figure  5.  The acceleration response envelope curve of unidirectional input circuit breaker at PGA = 0.40 g

    图  6  共振拍波作用下的位移响应

    Figure  6.  Displacement response under resonant beat waves

    图  7  设备支架减震器布置方案

    Figure  7.  The schemes of installations bracket vibration damper arrangement

    图  8  双线性滞回本构模型

    Figure  8.  Bilinear hysteresis model

    图  9  减震器滞回曲线

    Figure  9.  Hysteresis loops of metal damper

    图  10  地震作用下有、无增设减震器的断路器加速度动力放大系数对比

    Figure  10.  Comparison of acceleration power amplification factors for circuit breakers with and without additional dampers under seismic actions

    图  11  有、无增设减震器时瓷柱根部的应力时程曲线

    Figure  11.  Stress time history curve of the root of porcelain columns with and without vibration damping

    图  12  有、无增设减震器时断路器瓷柱根部应力及安全系数变化曲线

    Figure  12.  Variation curve of stresses and factors of safety at the root of porcelain columns with and without vibration damping

    表  1  断路器及支架结构的主要材料参数

    Table  1.   Main material parameters of circuit breaker and support structure

    项目 格构式支架 瓷柱及灭弧室
    材料 Q235钢 陶瓷
    密度/(t·mm−1) 7.85×10−9 2.3×10−9
    弹性模量/MPa 2.06×105 6.77×104
    泊松比 0.3 0.32
    下载: 导出CSV

    表  2  断路器前6阶模态振型及频率

    Table  2.   Mode shapes and frequencies of the first six orders of the circuit breakers

    振型阶数频率/Hz振型描述
    第1阶1.37沿z轴正向的一阶振型
    第2阶1.42沿x轴正向的一阶振型
    第3阶5.95钢支架的扭转振型
    第4阶28.33支柱沿z轴负向x轴正向,钢支架z轴正向的振型
    第4阶28.70支柱沿z轴负向x轴负向的振型,钢支架沿x轴正向的振型
    第6阶30.48钢支架支撑板向上凸起的振型
    下载: 导出CSV

    表  3  断路器顶部加速度响应及其放大系数

    Table  3.   The acceleration response at the top of the circuit breaker and its amplification factor

    地震波El Centro波人工波共振拍波
    测点位置/方向xxx
    输入加速度峰值/g0.400.400.40
    断路器顶部加速度/g1.691.982.83
    加速度放大系数4.254.957.08
    下载: 导出CSV

    表  4  断路器瓷柱根部应力及其安全系数

    Table  4.   Stress and safety factor at the root of the circuit breakers porcelain column

    地震波 瓷柱根部应力/MPa 安全系数
    El Centro波 28.47 1.40
    人工波 39.25 1.02
    共振拍波 55.26 0.72
    下载: 导出CSV

    表  5  有、无增设减震器的断路器自振频率(单位:赫兹)

    Table  5.   Self-oscillation frequency of circuit breakers with and without additional dampers (Unit:Hz)

    振型阶数未增设减震器增设减震器
    方案A方案B方案C
    第1阶1.371.331.291.28
    第2阶1.421.391.331.31
    第3阶5.955.625.305.13
    第4阶28.3328.2028.0727.94
    第5阶28.7028.6928.6228.59
    第6阶30.4830.4130.3230.30
    下载: 导出CSV

    表  6  地震作用下有、无增设减震器的断路器相对位移响应 (单位:毫米)

    Table  6.   Relative displacement response of circuit breakers with and without additional dampers under seismic actions (Unit:mm)

    地震波 未增设减震器 增设减震器
    方案A 方案B 方案C
    El Centro波 98.7 118.6 109.83 105.1
    人工波 117.2 146.5 133.4 129.8
    共振拍波 162.24 241.13 192.51 184.3
    下载: 导出CSV
  • 卜云,高传海,李文芳等,2021. 大数据架构下电力系统风险评估. 电网与清洁能源, 37 (1):77−83.

    Bu Y., Gao C. H., Li W. F., et al., 2021. Power system risk assessment based on big data. Power System and Clean Energy, 37 (1): 77−83. (in Chinese)
    丁璨,丁奕灵,袁召等,2021. 160 kV机械式直流断路器抗震特性分析. 广东电力,34(12):104−110. doi: 10.3969/j.issn.1007-290X.2021.012.014

    Ding C., Ding Y. L., Yuan Z., et al., 2021. Anti-seismic analysis of 160 kV mechanical DC circuit breaker. Guangdong Electric Power, 34(12): 104−110. (in Chinese) doi: 10.3969/j.issn.1007-290X.2021.012.014
    范荣全,曹枚根,卓越等,2012. 高压断路器抗震能力分析及抗震减震措施. 高压电器,48(3):12−16,20.

    Fan R. Q., Cao M. G., Zhuo Y., et al., 2012. Analysis on aseismic capacity of high voltage breaker and aseismic measures. High Voltage Apparatus, 48(3): 12−16,20. (in Chinese)
    陆杨,王昊,周欢等,2018. 基于地震模拟振动台的高压断路器抗震分析. 上海电力学院学报,34(3):303−308.

    Lu Y., Wang H., Zhou H., et al., 2018. Seismic analysis of high voltage circuit breaker based on seismic simulation test bench. Journal of Shanghai University of Electric Power, 34(3): 303−308. (in Chinese)
    文劲宇,周博,魏利屾,2022. 中国未来电力系统储电网初探. 电力系统保护与控制,50(7):1−10.

    Wen J. Y., Zhou B., Wei L. S., 2022. Preliminary study on an energy storage grid for future power system in China. Power System Protection and Control, 50(7): 1−10. (in Chinese)
    翁智敏,朱振山,温步瀛等,2021. 高比例新能源电力系统研究综述. 电器与能效管理技术,(11):1−7.

    Weng Z. M., Zhu Z. S., Wen B. Y., et al., 2021. Review of power system with high proportion of renewable energy. Electrical & Energy Management Technology, (11): 1−7. (in Chinese)
    尤红兵,赵凤新,2013. 芦山7.0级地震及电力设施破坏原因分析. 电力建设,34(8):100−104. doi: 10.3969/j.issn.1000-7229.2013.08.019

    You H. B., Zhao F. X., 2013. M 7.0 earthquake in Lushan and damage cause analysis of power facilities. Electric Power Construction, 34(8): 100−104. (in Chinese) doi: 10.3969/j.issn.1000-7229.2013.08.019
    张大长,赵文伯,刘明源,2009. 5·12汶川地震中电力设施震害情况及其成因分析. 南京工业大学学报(自然科学版),31(1):44−48. doi: 10.3969/j.issn.1671-7627.2009.01.008

    Zhang D. C., Zhao W. B., Liu M. Y., 2009. Analysis on seismic disaster damage cases and their causes of electric power equipment in 5·12 Wenchuan earthquake. Journal of Nanjing University of Technology (Natural Science Edition), 31(1): 44−48. (in Chinese) doi: 10.3969/j.issn.1671-7627.2009.01.008
    朱罡,王茂春,2020. 含新能源发电的电力系统状态估计研究. 电网与清洁能源,36(4):32−40,47.

    Zhu G., Wang M. C., 2020. Review on state estimation for power system containing renewable energy generation. Power System and Clean Energy, 36(4): 32−40,47. (in Chinese)
    朱秋楠,谭盛武,韩峰等,2019. 1100 kV柱式断路器地震模拟振动台抗震试验研究. 高压电器,55(7):47−55.

    Zhu Q. N., Tan S. W., Han F., et al., 2019. Research on seismic test of seismic simulated shaking table for 1100 kV column circuit breaker. High Voltage Apparatus, 55(7): 47−55. (in Chinese)
    Alessandri S., Giannini R., Paolacci F., et al., 2015. Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 2: shaking-table test validation. Engineering Structures, 98: 263−274.
    Selvam R. P., Gupta Y., 2019. Seismic performance of high voltage composite insulator circuit breaker. Power Research - A Journal of CPRI, 14(2): 162−168. doi: 10.33686/pwj.v14i2.144094
    Xie Q., Zhu R. Y., 2011. Earth, wind, and ice. IEEE Power and Energy Magazine, 9(2): 28−36. doi: 10.1109/MPE.2010.939947
    Zareei S. A., Hosseini M., Ghafory-Ashtiany M., 2017. The role of equipment in seismic risk of power substations. Proceedings of the Institution of Civil Engineers-Energy, 170(4): 150−162. doi: 10.1680/jener.16.00017
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回