Research on Seismic Performance of Current Transformer and Isolation Test
-
摘要: 瓷柱型电气设备是变电站最常见的室外高压电气设备,抗震能力较差,历次震害表明该设备损坏是造成电力系统功能失效的主要原因。对110 kV电流互感器进行振动台试验,原设备与安装滑动自复位隔震支座设备同时进行试验,测定设备在不同地震动强度、不同地震波作用下关键位置加速度、位移和应变响应,分析电流互感器抗震性能和隔震支座隔震效果。研究结果表明,地震动峰值加速度为0.4 g时,电流互感器瓷套管根部最大应力为22.4 MPa,电流互感器加速度放大系数为3~8;滑动自复位隔震支座明显降低了电流互感器自振频率,瓷柱型电气设备瓷套管顶部加速度响应降低了80%以上,瓷套管根部应变响应不同程度地降低,说明滑动自复位隔震支座具有良好的隔震效果。Abstract: Porcelain column electrical equipment is the most common type of outdoor high-voltage electrical equipment found in substations. However, porcelain-pillar electrical equipment exhibits poor earthquake resistance, which has been a significant factor in the failure of power system functions during past earthquakes. This paper presents findings from a shaking table test conducted on a 110 kV current transformer, comparing the original equipment with one equipped with sliding self-resetting isolation bearings. The study measures acceleration, displacement, and strain responses at key locations of the device under varying seismic intensities and waveforms to analyze the seismic performance and vibration isolation effectiveness of the isolation bearings. The test results indicate that when the peak acceleration reaches 0.4 g, the maximum stress at the base of the current transformer porcelain is 22.4 MPa. The acceleration amplification coefficient for the current transformer ranges between 3 and 8. Notably, the implementation of the sliding self-resetting isolation bearing significantly alters the natural vibration frequency of the current transformer. The acceleration response at the top of the porcelain column is reduced by over 80%, and the strain response at the base of the porcelain casing also experiences a notable decrease.These findings demonstrate that the sliding self-resetting isolation bearing provides an effective isolation mechanism, significantly enhancing the seismic performance of porcelain column electrical equipment.
-
表 1 电流互感器自振频率(单位:赫兹)
Table 1. Natural frequency of current transformer (Unit: Hz)
隔震支座设置情况 试验前 试验后 x向 y向 x向 y向 无隔震支座 4.20 3.61 4.20 3.61 滑动自复位隔震支座 1.47 1.26 1.58 1.47 表 2 El Centro波作用下瓷套管顶部-根部最大相对位移
Table 2. Maximum relative displacement of porcelain top-porcelain root under El Centro
峰值加速度 激励方向 x向最大相对位移/mm 隔震率/% y向最大相对位移/mm 隔震率/% 无隔震 隔震 无隔震 隔震 0.2 g x 10.2 3.2 68.6 3.3 1.3 60.6 y 2.5 0.9 64.0 4.4 3.6 18.2 x+y 9.0 4.1 54.4 6.6 4.4 33.3 x+y+z 11.4 6.4 43.9 9.7 7.0 27.8 0.3 g x 16.2 7.7 52.5 5.0 2.4 52.0 y 3.8 1.9 50.0 7.8 7.0 10.3 x+y 14.6 9.4 35.6 13.4 7.2 46.3 x+y+z 17.2 19.3 −12.2 15.6 11.0 29.5 0.4 g x 23.4 21.0 10.3 8.1 4.6 43.2 y 4.4 3.4 22.7 13.6 13.1 3.7 x+y 21.1 25.5 −20.9 16.7 12.8 23.4 x+y+z 24.5 61.1 −149.4 20.5 20.1 2.0 表 3 x向地震动激励下设备x向峰值加速度
Table 3. x-direction peak acceleration value of equipment under x-direction seismic excitation
地震动峰值加速度/g 地震波 台面峰值加速度/g 瓷套管顶部峰值加速度/g 放大系数 隔震率/% 有隔震 无隔震 0.2 El Centro 0.27 0.15 1.00 3.70 85.00 Taft波 0.20 0.18 0.98 4.90 81.63 人工波 0.19 0.17 1.08 5.68 84.26 0.3 El Centro 0.39 0.21 1.65 4.23 87.27 Taft波 0.29 0.17 2.10 7.24 91.90 人工波 0.27 0.22 1.64 6.07 86.59 0.4 El Centro 0.51 0.25 2.86 5.61 91.26 Taft波 0.41 0.20 2.01 4.90 90.05 人工波 0.37 0.27 2.78 7.51 90.29 表 4 x向地震动激励下瓷套管根部x向最大应变值
Table 4. Maximum strain value of porcelain root in the east-west direction under x-direction seismic excitation
地震动峰值加速度/g 地震动 无隔震最大应变值 有隔震最大应变值 隔震率/% 东 西 东 西 0.2 El Centro波 19.8×10−6 105.2×10−6 92.3×10−6 68.4×10−6 12.2×10−6 Taft波 18.0×10−6 126.0×10−6 84.1×10−6 114.4×10−6 9.2×10−6 人工波 20.3×10−6 65.0×10−6 38.0×10−6 45.9×10−6 29.4×10−6 0.3 El Centro波 31.5×10−6 112.8×10−6 77.7×10−6 92.1×10−6 18.4×10−6 Taft波 30.6×10−6 135.1×10−6 72.5×10−6 80.7×10−6 40.2×10−6 人工波 27.4×10−6 105.4×10−6 78.4×10−6 96.7×10−6 8.3×10−6 0.4 El Centro波 49.2×10−6 267.0×10−6 96.2×10−6 162.3×10−6 39.2×10−6 Taft波 33.8×10−6 323.3×10−6 62.1×10−6 116.1×10−6 58.3×10−6 人工波 41.5×10−6 271.0×10−6 134.8×10−6 54.2×10−6 50.3×10−6 -
柏文,戴君武,周惠蒙等,2016. 基于MRTMD的瓷柱型电气设备减震技术研究. 地震工程与工程振动,36(3):111−117.Bai W., Dai J. W., Zhou H. M., et al., 2016. Damping method for porcelain cylindrical electrical equipment based on MRTMD. Earthquake Engineering and Engineering Dynamics, 36(3): 111−117. (in Chinese) 柏文,戴君武,周惠蒙等,2018. 瓷柱型电气设备的MTMD减震方法试验研究. 高电压技术,44(3):841−848.Bai W., Dai J. W., Zhou H. M., et al., 2018. Application of multiple tuned mass dampers on seismic protection of porcelain cylindrical electrical equipment. High Voltage Engineering, 44(3): 841−848. (in Chinese) 柏文,戴君武,杨永强,2019. 瓷柱型电气设备基于BI-TMD的混合控制减震研究. 中国电机工程学报,39(13):3939−3946.Bai W., Dai J. W., Yang Y. Q., 2019. Effectiveness study of combined control strategy based on base isolation and tuned mass damper on porcelain cylindrical equipment. Proceedings of the CSEE, 39(13): 3939−3946. (in Chinese) 李圣,卢智成,邱宁等,2015. 加装金属减震装置的1000kV避雷器振动台试验研究. 高电压技术,41(5):1740−1745.Li S., Lu Z. C., Qiu N., et al., 2015. Study on shaking table test of 1000kV surge arrester with metal damper device. High Voltage Engineering, 41(5): 1740−1745. (in Chinese) 刘如山,张美晶,邬玉斌等,2010. 汶川地震四川电网震害及功能失效研究. 应用基础与工程科学学报,18(S1):200−211.Liu R. S., Zhang M. J., Wu Y. B., et al., 2010. Damage and failure study of Sichuan electric power grid in Wenchuan earthquake. Journal of Basic Science and Engineering, 18(S1): 200−211. (in Chinese) 刘如山,刘金龙,颜冬启等,2013. 芦山7.0级地震电力设施震害调查分析. 自然灾害学报,22(5):83−90.Liu R. S., Liu J. L., Yan D. Q., et al., 2013. Seismic damage investigation and analysis of electric power system in Lushan M S 7.0 earthquake. Journal of Natural Disasters, 22(5): 83−90. (in Chinese) 柳永玉,王均梅,王晓琪等,2010. 500kV电流互感器抗震性能分析. 世界地震工程,26(1):219−223.Liu Y. Y., Wang J. M., Wang X. Q., et al., 2010. Seismic performance analysis of 500kV current mutual transformer. World Earthquake Engineering, 26(1): 219−223. (in Chinese) 卢智成,邱宁,程永锋等,2015. 特高压TYD1000型电容式电压互感器抗震试验研究. 高电压技术,41(11):3694−3701.Lu Z. C., Qiu N., Cheng Y. F., et al., 2015. Study on seismic experiment of Ultra High voltage TDY1000 capacitive voltage transformer. High Voltage Engineering, 41(11): 3694−3701. (in Chinese) 尚守平,崔向龙,2016. 基础隔震研究与应用的新进展及问题. 广西大学学报(自然科学版),41(1):21−28.Shang S. P., Cui X. L., 2016. New progress and problems in research and application of base isolation. Journal of Guangxi University (Natural Science Edition), 41(1): 21−28. (in Chinese) 杨长青,2011. 基于地震动参数高压电气设备的易损性分析. 哈尔滨:中国地震局工程力学研究所.Yang C. Q., 2011. Vulnerability analysis of high-voltage electrical equipment based on ground motion parameter. Harbin:Institute of Engineering Mechanics,China Earthquake Administration. (in Chinese) 尤红兵,赵凤新,2013. 芦山7.0级地震及电力设施破坏原因分析. 电力建设,34(8):100−104. doi: 10.3969/j.issn.1000-7229.2013.08.019You H. B., Zhao F. X., 2013. M 7.0 earthquake in Lushan and damage cause analysis of power facilities. Electric Power Construction, 34(8): 100−104. (in Chinese) doi: 10.3969/j.issn.1000-7229.2013.08.019 张军,齐立忠,李科文等,2011. 电瓷型高压电气设备的抗震试验及有限元分析. 电力建设,32(7):6−10. doi: 10.3969/j.issn.1000-7229.2011.07.002Zhang J., Qi L. Z., Li K. W., et al., 2011. Shock test and finite element analysis of porcelain high-voltage electrical equipment. Electric Power Construction, 32(7): 6−10. (in Chinese) doi: 10.3969/j.issn.1000-7229.2011.07.002 张雪松,代泽兵,曹枚根等,2013. 安装新型铅减震器的500kV氧化锌避雷器动力特性. 重庆大学学报,36(7):66−73. doi: 10.11835/j.issn.1000-582X.2013.07.012Zhang X. S., Dai Z. B., Cao M. G., et al., 2013. Dynamic behavior of 500 kV metal oxide arresters with a new type of lead dampers. Journal of Chongqing University, 36(7): 66−73. (in Chinese) doi: 10.11835/j.issn.1000-582X.2013.07.012 Alessandri S., Giannini R., Paolacci F., et al., 2015. Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 1: preliminary tests and analyses. Engineering Structures, 98: 251−262. Dusicka P., Riley M. J., Kraxberger K., et al., 2013. Shaking response of tall high-voltage equipment retrofitted with friction dampers. In: Structures Congress 2013: Bridging Your Passion with Your Profession. Pittsburgh: American Society of Civil Engineers, 1381−1390. Ju Y. Z., Wu X. L., 2013. Analysis of vibration isolator’s anti-seismic performance in porcelain SF6 high voltage circuit breaker. Applied Mechanics and Materials, 448 −453 : 2045−2048. Kar R., Rainer J. H., Lefrançois A. C., 1996. Dynamic properties of a circuit breaker with friction-based seismic dampers. Earthquake Spectra, 12(2): 297−314. doi: 10.1193/1.1585881 Lau D. L., Tang A., Pierre J. R., 1995. Performance of lifelines during the 1994 Northridge earthquake. Canadian Journal of Civil Engineering, 22(2): 438−451. doi: 10.1139/l95-052