• ISSN 1673-5722
  • CN 11-5429/P

电流互感器抗震性能与隔震试验研究

夏旭忆 刘如山 李吉超 刘金龙 郭恩栋 王振辉

夏旭忆,刘如山,李吉超,刘金龙,郭恩栋,王振辉,2024. 电流互感器抗震性能与隔震试验研究. 震灾防御技术,19(3):569−577. doi:10.11899/zzfy20240315. doi: 10.11899/zzfy20240315
引用本文: 夏旭忆,刘如山,李吉超,刘金龙,郭恩栋,王振辉,2024. 电流互感器抗震性能与隔震试验研究. 震灾防御技术,19(3):569−577. doi:10.11899/zzfy20240315. doi: 10.11899/zzfy20240315
Xia Xuyi, Liu Rushan, Li Jichao, Liu Jinlong, Guo Endong, Wang Zhenhui. Research on Seismic Performance of Current Transformer and Isolation Test[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 569-577. doi: 10.11899/zzfy20240315
Citation: Xia Xuyi, Liu Rushan, Li Jichao, Liu Jinlong, Guo Endong, Wang Zhenhui. Research on Seismic Performance of Current Transformer and Isolation Test[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 569-577. doi: 10.11899/zzfy20240315

电流互感器抗震性能与隔震试验研究

doi: 10.11899/zzfy20240315
基金项目: 国家重点研发计划 (2022YFC3003603)
详细信息
    作者简介:

    夏旭忆,男,生于1996年。硕士研究生。主要从事生命线工程抗震研究。E-mail:xiaxuyi0521@163.com

    通讯作者:

    刘如山,男,生于1964年。研究员。主要从事生命线工程抗震研究。E-mail:liurushan@sina.com

Research on Seismic Performance of Current Transformer and Isolation Test

  • 摘要: 瓷柱型电气设备是变电站最常见的室外高压电气设备,抗震能力较差,历次震害表明该设备损坏是造成电力系统功能失效的主要原因。对110 kV电流互感器进行振动台试验,原设备与安装滑动自复位隔震支座设备同时进行试验,测定设备在不同地震动强度、不同地震波作用下关键位置加速度、位移和应变响应,分析电流互感器抗震性能和隔震支座隔震效果。研究结果表明,地震动峰值加速度为0.4 g时,电流互感器瓷套管根部最大应力为22.4 MPa,电流互感器加速度放大系数为3~8;滑动自复位隔震支座明显降低了电流互感器自振频率,瓷柱型电气设备瓷套管顶部加速度响应降低了80%以上,瓷套管根部应变响应不同程度地降低,说明滑动自复位隔震支座具有良好的隔震效果。
  • 图  1  滑动自复位隔震支座

    Figure  1.  Sliding self-resetting isolation bearings

    图  2  安装于振动台的互感器

    Figure  2.  Transformer on shake table

    图  3  传感器布置示意

    Figure  3.  Schematic diagram of sensor arrangement

    图  4  输入地震动信息

    Figure  4.  Input ground motion records

    图  5  x+y+z向输入0.4 g El Centro 波时x向相对位移时程曲线

    Figure  5.  Time history of relative displacement in x direction when 0.4 g El Centro wave is input in x+y+z direction

    图  6  x向0.3 g地震动激励下瓷套管顶部-根部x向相对位移时程曲线

    Figure  6.  Time-history diagram of relative displacement in x direction of porcelain top-porcelain root under 0.3 g x-direction seismic excitation

    图  7  隔震支座x向相对位移

    Figure  7.  Relative displacement value of isolation bearing in x direction

    图  8  x向0.2 g地震动激励下瓷套管顶部x向加速度时程曲线

    Figure  8.  Acceleration time history in x direction of porcelain top under 0.2 g x seismic excitation

    图  9  x向0.4 g地震动激励时瓷套管根部应变时程曲线

    Figure  9.  Strain time history of porcelain root under 0.4 g x seismic excitation

    表  1  电流互感器自振频率(单位:赫兹)

    Table  1.   Natural frequency of current transformer (Unit: Hz)

     隔震支座设置情况试验前试验后
    xyxy
    无隔震支座4.203.614.203.61
    滑动自复位隔震支座1.471.261.581.47
    下载: 导出CSV

    表  2  El Centro波作用下瓷套管顶部-根部最大相对位移

    Table  2.   Maximum relative displacement of porcelain top-porcelain root under El Centro

    峰值加速度 激励方向 x向最大相对位移/mm 隔震率/% y向最大相对位移/mm 隔震率/%
    无隔震 隔震 无隔震 隔震
    0.2 g x 10.2 3.2 68.6 3.3 1.3 60.6
    y 2.5 0.9 64.0 4.4 3.6 18.2
    x+y 9.0 4.1 54.4 6.6 4.4 33.3
    x+y+z 11.4 6.4 43.9 9.7 7.0 27.8
    0.3 g x 16.2 7.7 52.5 5.0 2.4 52.0
    y 3.8 1.9 50.0 7.8 7.0 10.3
    x+y 14.6 9.4 35.6 13.4 7.2 46.3
    x+y+z 17.2 19.3 −12.2 15.6 11.0 29.5
    0.4 g x 23.4 21.0 10.3 8.1 4.6 43.2
    y 4.4 3.4 22.7 13.6 13.1 3.7
    x+y 21.1 25.5 −20.9 16.7 12.8 23.4
    x+y+z 24.5 61.1 −149.4 20.5 20.1 2.0
    下载: 导出CSV

    表  3  x向地震动激励下设备x向峰值加速度

    Table  3.   x-direction peak acceleration value of equipment under x-direction seismic excitation

    地震动峰值加速度/g地震波台面峰值加速度/g瓷套管顶部峰值加速度/g放大系数隔震率/%
    有隔震无隔震
    0.2El Centro0.270.151.003.7085.00
    Taft波0.200.180.984.9081.63
    人工波0.190.171.085.6884.26
    0.3El Centro0.390.211.654.2387.27
    Taft波0.290.172.107.2491.90
    人工波0.270.221.646.0786.59
    0.4El Centro0.510.252.865.6191.26
    Taft波0.410.202.014.9090.05
    人工波0.370.272.787.5190.29
    下载: 导出CSV

    表  4  x向地震动激励下瓷套管根部x向最大应变值

    Table  4.   Maximum strain value of porcelain root in the east-west direction under x-direction seismic excitation

    地震动峰值加速度/g 地震动 无隔震最大应变值 有隔震最大应变值 隔震率/%
    西 西
    0.2 El Centro波 19.8×10−6 105.2×10−6 92.3×10−6 68.4×10−6 12.2×10−6
    Taft波 18.0×10−6 126.0×10−6 84.1×10−6 114.4×10−6 9.2×10−6
    人工波 20.3×10−6 65.0×10−6 38.0×10−6 45.9×10−6 29.4×10−6
    0.3 El Centro波 31.5×10−6 112.8×10−6 77.7×10−6 92.1×10−6 18.4×10−6
    Taft波 30.6×10−6 135.1×10−6 72.5×10−6 80.7×10−6 40.2×10−6
    人工波 27.4×10−6 105.4×10−6 78.4×10−6 96.7×10−6 8.3×10−6
    0.4 El Centro波 49.2×10−6 267.0×10−6 96.2×10−6 162.3×10−6 39.2×10−6
    Taft波 33.8×10−6 323.3×10−6 62.1×10−6 116.1×10−6 58.3×10−6
    人工波 41.5×10−6 271.0×10−6 134.8×10−6 54.2×10−6 50.3×10−6
    下载: 导出CSV
  • 柏文,戴君武,周惠蒙等,2016. 基于MRTMD的瓷柱型电气设备减震技术研究. 地震工程与工程振动,36(3):111−117.

    Bai W., Dai J. W., Zhou H. M., et al., 2016. Damping method for porcelain cylindrical electrical equipment based on MRTMD. Earthquake Engineering and Engineering Dynamics, 36(3): 111−117. (in Chinese)
    柏文,戴君武,周惠蒙等,2018. 瓷柱型电气设备的MTMD减震方法试验研究. 高电压技术,44(3):841−848.

    Bai W., Dai J. W., Zhou H. M., et al., 2018. Application of multiple tuned mass dampers on seismic protection of porcelain cylindrical electrical equipment. High Voltage Engineering, 44(3): 841−848. (in Chinese)
    柏文,戴君武,杨永强,2019. 瓷柱型电气设备基于BI-TMD的混合控制减震研究. 中国电机工程学报,39(13):3939−3946.

    Bai W., Dai J. W., Yang Y. Q., 2019. Effectiveness study of combined control strategy based on base isolation and tuned mass damper on porcelain cylindrical equipment. Proceedings of the CSEE, 39(13): 3939−3946. (in Chinese)
    李圣,卢智成,邱宁等,2015. 加装金属减震装置的1000kV避雷器振动台试验研究. 高电压技术,41(5):1740−1745.

    Li S., Lu Z. C., Qiu N., et al., 2015. Study on shaking table test of 1000kV surge arrester with metal damper device. High Voltage Engineering, 41(5): 1740−1745. (in Chinese)
    刘如山,张美晶,邬玉斌等,2010. 汶川地震四川电网震害及功能失效研究. 应用基础与工程科学学报,18(S1):200−211.

    Liu R. S., Zhang M. J., Wu Y. B., et al., 2010. Damage and failure study of Sichuan electric power grid in Wenchuan earthquake. Journal of Basic Science and Engineering, 18(S1): 200−211. (in Chinese)
    刘如山,刘金龙,颜冬启等,2013. 芦山7.0级地震电力设施震害调查分析. 自然灾害学报,22(5):83−90.

    Liu R. S., Liu J. L., Yan D. Q., et al., 2013. Seismic damage investigation and analysis of electric power system in Lushan M S 7.0 earthquake. Journal of Natural Disasters, 22(5): 83−90. (in Chinese)
    柳永玉,王均梅,王晓琪等,2010. 500kV电流互感器抗震性能分析. 世界地震工程,26(1):219−223.

    Liu Y. Y., Wang J. M., Wang X. Q., et al., 2010. Seismic performance analysis of 500kV current mutual transformer. World Earthquake Engineering, 26(1): 219−223. (in Chinese)
    卢智成,邱宁,程永锋等,2015. 特高压TYD1000型电容式电压互感器抗震试验研究. 高电压技术,41(11):3694−3701.

    Lu Z. C., Qiu N., Cheng Y. F., et al., 2015. Study on seismic experiment of Ultra High voltage TDY1000 capacitive voltage transformer. High Voltage Engineering, 41(11): 3694−3701. (in Chinese)
    尚守平,崔向龙,2016. 基础隔震研究与应用的新进展及问题. 广西大学学报(自然科学版),41(1):21−28.

    Shang S. P., Cui X. L., 2016. New progress and problems in research and application of base isolation. Journal of Guangxi University (Natural Science Edition), 41(1): 21−28. (in Chinese)
    杨长青,2011. 基于地震动参数高压电气设备的易损性分析. 哈尔滨:中国地震局工程力学研究所.

    Yang C. Q., 2011. Vulnerability analysis of high-voltage electrical equipment based on ground motion parameter. Harbin:Institute of Engineering Mechanics,China Earthquake Administration. (in Chinese)
    尤红兵,赵凤新,2013. 芦山7.0级地震及电力设施破坏原因分析. 电力建设,34(8):100−104. doi: 10.3969/j.issn.1000-7229.2013.08.019

    You H. B., Zhao F. X., 2013. M 7.0 earthquake in Lushan and damage cause analysis of power facilities. Electric Power Construction, 34(8): 100−104. (in Chinese) doi: 10.3969/j.issn.1000-7229.2013.08.019
    张军,齐立忠,李科文等,2011. 电瓷型高压电气设备的抗震试验及有限元分析. 电力建设,32(7):6−10. doi: 10.3969/j.issn.1000-7229.2011.07.002

    Zhang J., Qi L. Z., Li K. W., et al., 2011. Shock test and finite element analysis of porcelain high-voltage electrical equipment. Electric Power Construction, 32(7): 6−10. (in Chinese) doi: 10.3969/j.issn.1000-7229.2011.07.002
    张雪松,代泽兵,曹枚根等,2013. 安装新型铅减震器的500kV氧化锌避雷器动力特性. 重庆大学学报,36(7):66−73. doi: 10.11835/j.issn.1000-582X.2013.07.012

    Zhang X. S., Dai Z. B., Cao M. G., et al., 2013. Dynamic behavior of 500 kV metal oxide arresters with a new type of lead dampers. Journal of Chongqing University, 36(7): 66−73. (in Chinese) doi: 10.11835/j.issn.1000-582X.2013.07.012
    Alessandri S., Giannini R., Paolacci F., et al., 2015. Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 1: preliminary tests and analyses. Engineering Structures, 98: 251−262.
    Dusicka P., Riley M. J., Kraxberger K., et al., 2013. Shaking response of tall high-voltage equipment retrofitted with friction dampers. In: Structures Congress 2013: Bridging Your Passion with Your Profession. Pittsburgh: American Society of Civil Engineers, 1381−1390.
    Ju Y. Z., Wu X. L., 2013. Analysis of vibration isolator’s anti-seismic performance in porcelain SF6 high voltage circuit breaker. Applied Mechanics and Materials, 448 −453 : 2045−2048.
    Kar R., Rainer J. H., Lefrançois A. C., 1996. Dynamic properties of a circuit breaker with friction-based seismic dampers. Earthquake Spectra, 12(2): 297−314. doi: 10.1193/1.1585881
    Lau D. L., Tang A., Pierre J. R., 1995. Performance of lifelines during the 1994 Northridge earthquake. Canadian Journal of Civil Engineering, 22(2): 438−451. doi: 10.1139/l95-052
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回