• ISSN 1673-5722
  • CN 11-5429/P

场地土层渗透性差异对砂土液化的影响研究

王浩宇 王伟 李金宇 张晓庆 杨研科 徐凯放 熊文

王浩宇,王伟,李金宇,张晓庆,杨研科,徐凯放,熊文,2024. 场地土层渗透性差异对砂土液化的影响研究. 震灾防御技术,19(3):558−568. doi:10.11899/zzfy20240314. doi: 10.11899/zzfy20240314
引用本文: 王浩宇,王伟,李金宇,张晓庆,杨研科,徐凯放,熊文,2024. 场地土层渗透性差异对砂土液化的影响研究. 震灾防御技术,19(3):558−568. doi:10.11899/zzfy20240314. doi: 10.11899/zzfy20240314
Wang Haoyu, Wang Wei, Li Jinyu, Zhang Xiaoqing, Yang Yanke, Xu Kaifang, Xiong Wen. A Study of the Effect of Permeability Difference of Depositional Architecture on Sand Liquefaction[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 558-568. doi: 10.11899/zzfy20240314
Citation: Wang Haoyu, Wang Wei, Li Jinyu, Zhang Xiaoqing, Yang Yanke, Xu Kaifang, Xiong Wen. A Study of the Effect of Permeability Difference of Depositional Architecture on Sand Liquefaction[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 558-568. doi: 10.11899/zzfy20240314

场地土层渗透性差异对砂土液化的影响研究

doi: 10.11899/zzfy20240314
基金项目: 中央高校基本科研业务费研究生科技创新基金(ZY20230312);中国地震局地震科技星火计划(XH23062A);中央高校基本科研业务费(ZY20180107)
详细信息
    作者简介:

    王浩宇,男,生于1999年。硕士研究生。主要从事砂土液化方面的研究。E-mail:1285876098@qq.com

    通讯作者:

    王伟,男,生于1982年。副教授,博士。主要从事岩土地震工程、防震减灾等方面的教学和研究工作。E-mail:wwwiem@163.com

  • 12 https://www.nzgd.org.nz/

A Study of the Effect of Permeability Difference of Depositional Architecture on Sand Liquefaction

  • 摘要: 目前国内外的砂土液化判别方法主要是基于易液化土层的原位测试资料建立,未考虑其周围相邻土层的渗透性差异。理论上讲,在地震荷载作用下,相邻土层渗透性差异对液化土层超孔隙水压累积具有影响。基于原位静力触探和钻孔资料,建立了新西兰地震中砂土液化场地剖面,分析表明地表液化分布区域与场地土层结构特征显著相关。物理模型试验和数值模拟计算结果表明,高渗透性的砾石土层对相邻液化土层超孔隙水压累积影响显著,其影响程度可以采用土层竖向等效渗透系数表征,等效渗透系数增大时,易液化土层超孔隙水压力累积明显变小,降低了液化势。因此,需要在砂土液化判据中考虑相邻土层渗透性差异因素,进而提高液化判别结果的准确性。
    1)  12 https://www.nzgd.org.nz/
  • 图  1  CMHS场地地表可见液化砂土喷出区域与工程地质剖面分布示意

    Figure  1.  The liquefaction manifestation area and the distribution of engineering geological profiles on the CMHS site

    图  2  CMHS场地剖面

    Figure  2.  Three profiles of CMHS site

    Figure  3.  Distribution curve of particle size

    图  4  土层结构物理模型(单位:厘米)

    Figure  4.  Schematic diagram of physical model of soil layer structure (Unit: cm)

    图  5  加速度时程曲线

    Figure  5.  Acceleration time history curve

    图  6  数值模型(以2A为例)

    Figure  6.  Numerical model diagram(Taking 2A as an example)

    图  7  第1组试验曲线

    Figure  7.  Experimental curves of the first group

    图  8  物理模型与数值模拟孔压曲线对比

    Figure  8.  Comparison of pore pressure curves between physical models and numerical simulation

    图  9  物理模型试验现象

    Figure  9.  Observed phenomena of physical model experiments

    表  1  CMHS场地11处位置竖向等效渗透系数

    Table  1.   Vertical equivalent permeability coefficient at 11 locations of CMHS site

    位置 液化情况 竖向等效渗透系数kz/(cm·s−1)
    A1 非液化 1.66×10−2
    A2 准液化 7.46×10−5
    A3 液化 5.5×10−5
    A4 液化 1.14×10−4
    B1 非液化 8.84×10−3
    B2 液化 3.84×10−3
    B3 液化 1.23×10−4
    C1 液化 3.3×10−4
    C2 非液化 1.31×10−2
    C3 非液化 8.76×10−3
    C4 非液化 1.81×10−2
    下载: 导出CSV

    表  2  砂土液化判别结果

    Table  2.   Discrimination results of sand liquefaction

    位置实测击数N临界击数NcrN/Ncr判别结果
    A16.09.40.64液化
    A26.07.40.81液化
    A36.06.20.97液化
    A46.09.40.64液化
    B17.09.40.75液化
    B26.09.40.64液化
    B38.010.30.78液化
    C16.08.50.71液化
    C26.08.50.71液化
    C36.09.60.63液化
    C46.08.60.70液化
    下载: 导出CSV

    表  3  计算模型土体材料物理力学参数

    Table  3.   Physical and mechanical parameters of soil materials

    参数 砾石 细砂 中砂
    饱和密度/(kg·m−3) 2 000 1 920 1 920
    剪切模量/MPa 11.7 10.2 10.5
    体积模量/MPa 27.3 22.5 22.8
    内聚力/kPa 0 0 0
    内摩擦角/(°) 38 33 40
    孔隙率 0.28 0.42 0.4
    渗透系数/(cm·s−1) 9.5×10−1 3.3×10−3 5.3×10−3
    下载: 导出CSV

    表  4  竖向等效渗透系数与液化情况

    Table  4.   Vertical equivalent permeability coefficient and liquefaction situation

    组别 竖向等效渗透系数kz/(cm·s−1) 土体峰值动孔压比 浅部孔压增量/kPa 深部孔压增量/kPa 液化情况
    1A 3.3×10−3 1.1(浅部) 2.5 3.3 液化
    1B 3.9×10−3 1.1(浅部) 0.5 1.5 液化
    2A 4.3×10−3 1.3(浅部) 1.7 2.6 液化
    2B 5.1×10−3 0.9(深部) 0.9 2.3 准液化
    3A 4.7×10−3 0.9(浅部) 1.3 2.1 准液化
    3B 6.8×10−3 0.7(深部) 0.5 1.8 非液化
    下载: 导出CSV
  • 邓煜晨,陈志波,郑有强等,2022. 基于孔压静力触探的修正土类指数土体分类方法与实例应用. 岩土力学,43(1):227−234.

    Deng Y. C., Chen Z. B., Zheng Y. Q., et al., 2022. CPTU-based modified soil behavior type index classification method and its application. Rock and Soil Mechanics, 43(1): 227−234. (in Chinese)
    刘松玉,蔡国军,邹海峰,2013. 基于CPTU的中国实用土分类方法研究. 岩土工程学报,35(10):1765−1776.

    Liu S. Y., Cai G. J., Zou H. F., 2013. Practical soil classification methods in China based on piezocone penetration tests. Chinese Journal of Geotechnical Engineering, 35(10): 1765−1776. (in Chinese)
    刘松玉,邹海峰,蔡国军等,2017. 基于CPTU的土分类方法在港珠澳大桥中的应用. 岩土工程学报,39(S2):1−4.

    Liu S. Y., Zou H. F., Cai G. J., et al., 2017. Application of CPTU-based soil classification methods in Hong Kong-Zhuhai-Macao Bridge. Chinese Journal of Geotechnical Engineering, 39(S2): 1−4. (in Chinese)
    王伟,齐亚坤,王浩宇等,2022. 河流沉积相土层结构对砂土液化的影响研究. 地震学报,44(4):665−676.

    Wang W., Qi Y. K., Wang H. Y., et al., 2022. Effect of soil layer structure with fluvial sedimentary facies on sand liquefaction. Acta Seismologica Sinica, 44(4): 665−676. (in Chinese)
    Berrill J. B., Mulqueen P. C., Ooi E. T. C., 1994. Liquefaction at Kaiapoi in the 1901 Cheviot, New Zealand, earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 27(3): 178−189. doi: 10.5459/bnzsee.27.3.178-189
    Cox S. C., Rutter H. K., Sims A., et al., 2012. Hydrological effects of the MW 7.1 Darfield (Canterbury) earthquake, 4 September 2010, New Zealand. New Zealand Journal of Geology and Geophysics, 55(3): 231−247. doi: 10.1080/00288306.2012.680474
    Cox S. C., van Ballegooy S., Rutter H. K., et al., 2021. Can artesian groundwater and earthquake-induced aquifer leakage exacerbate the manifestation of liquefaction?. Engineering Geology, 281: 105982. doi: 10.1016/j.enggeo.2020.105982
    Cubrinovski M., Green R. A., Allen J., et al., 2010. Geotechnical reconnaissance of the 2010 Darfield (Canterbury) earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 43(4): 243−320. doi: 10.5459/bnzsee.43.4.243-320
    Cubrinovski M., Bradley B., Wotherspoon L., et al., 2011a. Geotechnical aspects of the 22 February 2011 Christchurch earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4): 205−226. doi: 10.5459/bnzsee.44.4.205-226
    Cubrinovski M., Bray J. D., Taylor M., et al., 2011b. Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake. Seismological Research Letters, 82(6): 893−904. doi: 10.1785/gssrl.82.6.893
    Downes G., Yetton M., 2012. Pre - 2010 historical seismicity near Christchurch, New Zealand: the 1869 MW 4.7-4.9 Christchurch and 1870 MW 5.6-5.8 Lake Ellesmere earthquakes. New Zealand Journal of Geology and Geophysics, 55(3): 199−205. doi: 10.1080/00288306.2012.690767
    Gulley A. K., Ward N. F. D., Cox S. C., et al., 2013. Groundwater responses to the recent Canterbury earthquakes: a comparison. Journal of Hydrology, 504: 171−181. doi: 10.1016/j.jhydrol.2013.09.018
    Lees J. J., Ballagh R. H., Orense R. P., et al., 2015. CPT-based analysis of liquefaction and re-liquefaction following the Canterbury earthquake sequence. Soil Dynamics and Earthquake Engineering, 79: 304−314. doi: 10.1016/j.soildyn.2015.02.004
    Orense R. P., Kiyota T., Yamada S., et al., 2011. Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes. Seismological Research Letters, 82(6): 905−918. doi: 10.1785/gssrl.82.6.905
    Quigley M. C., Bastin S., Bradley B. A., 2013. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology, 41(4): 419−422. doi: 10.1130/G33944.1
    Reid C. M., Thompson N. K., Irvine J. R. M., et al., 2012. Sand volcanoes in the Avon-Heathcote Estuary produced by the 2010-2011 Christchurch Earthquakes: implications for geological preservation and expression. New Zealand Journal of Geology and Geophysics, 55(3): 249−254. doi: 10.1080/00288306.2012.674051
    Rutter H. K., Cox S. C., Dudley N. F., et al., 2016. Aquifer permeability change caused by a near-field earthquake, Canterbury, New Zealand. Water Resources Research, 52(11): 8861−8878. doi: 10.1002/2015WR018524
    Tuttle M. P., Villamor P., Almond P., et al., 2017. Liquefaction induced during the 2010–2011 Canterbury, New Zealand, earthquake sequence and lessons learned for the study of paleoliquefaction features. Seismological Research Letters, 88(5): 1403−1414. doi: 10.1785/0220170073
    van Ballegooy S., Malan P., Lacrosse V., et al., 2014. Assessment of liquefaction-induced land damage for residential Christchurch. Earthquake Spectra, 30(1): 31−55. doi: 10.1193/031813EQS070M
    van Ballegooy S., Wentz F., Boulanger R. W., 2015. Evaluation of CPT-based liquefaction procedures at regional scale. Soil Dynamics and Earthquake Engineering, 79: 315−334. doi: 10.1016/j.soildyn.2015.09.016
    Ward N. F. D., 2015. On the mechanism of earthquake induced groundwater flow. Journal of Hydrology, 530: 561−567. doi: 10.1016/j.jhydrol.2015.09.024
    Weaver K. C., Doan M. L., Cox S. C., et al., 2019. Tidal behavior and water‐level changes in gravel aquifers in response to multiple earthquakes: a case study from New Zealand. Water Resources Research, 55(2): 1263−1278. doi: 10.1029/2018WR022784
    Wotherspoon L. M., Pender M. J., Orense R. P., 2012. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. Engineering Geology, 125: 45−55. doi: 10.1016/j.enggeo.2011.11.001
    Wotherspoon L. M., Orense R., Bradley B., et al., 2013. Geotechnical characterization of Christchurch strong motion stations. Auckland: Earthquake Commission.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  9
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-17
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回