Transverse Seismic Response of the Double-deck Rocking Frame Bridge with Additional Yielding Dampers
-
摘要: 为控制双层框架墩结构地震损伤,提升结构震后功能恢复能力,本文提出一种屈服消能摇摆双层框架墩结构,结合拉格朗日方程和动量矩定理建立了结构横桥向地震反应分析模型。针对典型双层桥梁框架墩结构分别建立了现浇分析模型、自由摇摆分析模型和屈服消能摇摆分析模型,并采用远场地震动、近场无脉冲地震动和近场脉冲地震动对结构进行横桥向地震反应分析和结构参数影响规律分析。分析结果表明,摇摆桥墩可避免桥墩发生残余变形,且防屈曲阻尼器的设置起到了较好的减隔震及抗倒塌作用,尤其是在近场脉冲地震动作用下效果最为显著;摇摆结构参数对结构地震反应有明显影响,下层结构地震反应随着摇摆桥墩高宽比、尺寸参数和下层梁墩质量比的增大呈减小趋势,而上层现浇结构地震反应呈相反趋势,值得注意的是较小的上层结构固有频率将会增加现浇墩柱发生塑性变形的可能性。Abstract: To limit earthquake damage and enhance the post-earthquake functional recovery of double-deck bridge frames, this study proposes a yield energy-dissipated double-deck rocking bridge frame based on the rocking concept. A rigid body seismic analysis model of the double-deck rocking bridge frame in the transverse direction was developed using the Lagrange equation and an angular velocity reduction coefficient to account for energy loss during rocking impacts. The research focuses on a double-deck bridge frame with conventional structural parameters, establishing analysis models for cast-in-place structures, free rocking structures, and yield energy-dissipation rocking structures. Seismic response and parameter analyses were conducted in the transverse direction under far-field, non-pulse near-field, and pulse near-field ground motion excitations. The results indicate that rocking piers can effectively prevent residual deformation of the bridge piers. Additionally, anti-buckling dampers significantly reduce the seismic response and enhance the collapse resistance of the double-deck rocking bridge frame, particularly under near-field earthquake records with pulse excitations. The parameters of the rocking structure notably influence the seismic response. Increasing the aspect ratio, the size, and the mass ratio of the beam to the rocking column effectively reduces the seismic response of the lower structure, although it may increase the seismic response of the upper cast-in-place structure to some extent. Importantly, a lower natural frequency of the superstructure may raise the likelihood of plastic deformation in the cast-in-place column.
-
Key words:
- Double-deck bridge /
- Rocking column /
- Dynamic analytical model /
- Seismic response /
- Parameter analysis
-
表 1 结构参数
Table 1. Parameters of structure
类别 桥墩宽高比 α 桥墩尺寸参数 R/m 上层结构固有频率 ωs/(rad·s−1) 下层梁墩质量比 γ1 上层结构墩质量比γ2 参数范围 0.1~0.3 3~10 5~50 2~12 2~12 参数增量 0.02 1 5 1 1 -
布占宇,唐光武,2011. 无黏结预应力带耗能钢筋预制节段拼装桥墩抗震性能研究. 中国铁道科学,32(3):33−40.Bu Z. Y., Tang G. W., 2011. Seismic performance investigation of unbonded prestressing precast segmental bridge piers with energy dissipation bars. China Railway Science, 32(3): 33−40. (in Chinese) 陈敬一,2020. 功能快速恢复摇摆双层框架墩结构地震反应分析. 北京:北京工业大学.Chen J. Y., 2020. Seismic response of rocking double-deck frame column systems with rapid post-earthquake resilience. Beijing:Beijing University of Technology. (in Chinese) 陈敬一,杜修力,韩强等,2020. 摇摆双层桥梁地震反应及抗倒塌能力分析. 工程力学,37(10):56−69. doi: 10.6052/j.issn.1000-4750.2019.10.0647Chen J. Y., Du X. L., Han Q., et al., 2020. Analysis of seismic response and overturning resistance of rocking double-deck bridge system. Engineering Mechanics, 37(10): 56−69. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0647 葛继平,魏红一,王志强,2008. 循环荷载作用下预制拼装桥墩抗震性能分析. 同济大学学报(自然科学版),36(7):894−899.Ge J. P., Wei H. Y., Wang Z. Q., 2008. Seismic performance of precast segmental bridge column under cyclic loading. Journal of Tongji University (Natural Science), 36(7): 894−899. (in Chinese) 孙治国,赵泰儀,王东升等,2020. 基于RSC体系的双层桥梁排架墩地震损伤控制设计. 中国公路学报,33(3):97−106. doi: 10.3969/j.issn.1001-7372.2020.03.009Sun Z. G., Zhao T. Y., Wang D. S., et al., 2020. Seismic damage control design for double-deck bridge bents based on rocking self-centering system. China Journal of Highway and Transport, 33(3): 97−106. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.03.009 孙治国,王严信,王东升等,2022. 近断层竖向地震动下双层桥梁排架墩抗震性能分析. 应用基础与工程科学学报,30(6):1494−1504.Sun Z. G., Wang Y. X., Wang D. S., et al., 2022. Analysis on seismic behavior of double-deck bridge bents under near fault vertical earthquake ground motions. Journal of Basic Science and Engineering, 30(6): 1494−1504. (in Chinese) 周雨龙,张劲泉,韩强等,2020. 近场脉冲型地震作用下黏滞阻尼器对双柱摇摆桥墩减震作用研究. 土木工程学报,53(S2):288−293.Zhou Y. L., Zhang J. Q., Han Q., et al., 2020. Effect of viscous dampers on seismic response of rocking double-column bents under near-field ground motions with strong pulses. China Civil Engineering Journal, 53(S2): 288−293. (in Chinese) 周雨龙,韩强,张劲泉等,2021. 消能自复位摇摆框架墩结构地震反应及易损性分析. 中国公路学报,34(11):153−164. doi: 10.3969/j.issn.1001-7372.2021.11.013Zhou Y. L., Han Q., Zhang J. Q., et al., 2021. Seismic response and fragility analysis of post-tensioned rocking bridge frames with dampers. China Journal of Highway and Transport, 34(11): 153−164. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.11.013 Applied Technology Council, 2009. Quantification of building seismic performance factors. Washington: Federal Emergency Management Agency. Bachmann J. A., Vassiliou M. F., Stojadinović B., 2017. Dynamics of rocking podium structures. Earthquake Engineering & Structural Dynamics, 46(14): 2499−2517. Chang G. A. , Mander J. B. , 1994. Seismic energy based fatigue damage analysis of bridge columns: part I–evaluation of seismic capacity. Red Jacket Quadrangle: State University of New York at Buffalo. Cheng C. T., 2008. Shaking table tests of a self-centering designed bridge substructure. Engineering Structures, 30(12): 3426−3433. doi: 10.1016/j.engstruct.2008.05.017 Du X. L., Zhou Y. L., Han Q., et al., 2019. Shaking table tests of a single-span freestanding rocking bridge for seismic resilience and isolation. Advances in Structural Engineering, 22(15): 3222−3233. doi: 10.1177/1369433219859410 Han Q., Jia Z. L., Xu K., et al., 2019. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience. Engineering Structures, 188: 218−232. doi: 10.1016/j.engstruct.2019.03.024 Housner G. W., 1963. The behavior of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America, 53(2): 403−417. doi: 10.1785/BSSA0530020403 Kalliontzis D., Sritharan S., Schultz A., 2016. Improved coefficient of restitution estimation for free rocking members. Journal of Structural Engineering, 142(12): 06016002. doi: 10.1061/(ASCE)ST.1943-541X.0001598 Kunnath S. K., Gross J. L., 1995. Inelastic response of the cypress viaduct to the Loma Prieta earthquake. Engineering Structures, 17(7): 485−493. doi: 10.1016/0141-0296(95)00103-E Makris N., Vassiliou M. F., 2014. Are some top-heavy structures more stable?. Journal of Structural Engineering, 140(5): 06014001. doi: 10.1061/(ASCE)ST.1943-541X.0000933 Mander J. B. , Cheng C. T. , 1997. Seismic resistance of bridge piers based on damage avoidance design. New York: National Center for Earthquake Engineering Research. Marriott D., Pampanin S., Bull D. K., et al., 2008. Dynamic testing of precast, post-tensioned rocking wall systems with alternative dissipating solutions. Bulletin of the New Zealand Society for Earthquake Engineering, 41(2): 90−103. doi: 10.5459/bnzsee.41.2.90-103 Marriott D., Pampanin S., Palermo A., 2009. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters. Earthquake Engineering & Structural Dynamics, 38(3): 331−354. Marriott D., Pampanin S., Palermo A., 2011. Biaxial testing of unbonded post-tensioned rocking bridge piers with external replacable dissipaters. Earthquake Engineering & Structural Dynamics, 40(15): 1723−1741. Ou Y. C., Wang P. H., Tsai M. S., et al., 2010. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions. Journal of Structural Engineering, 136(3): 255−264. doi: 10.1061/(ASCE)ST.1943-541X.0000110 Palermo A., Pampanin S., Calvi G. M., 2005. Concept and development of hybrid solutions for seismic resistant bridge systems. Journal of Earthquake Engineering, 9(6): 899−921. Palermo A., Pampanin S., Marriott D., 2007. Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections. Journal of Structural Engineering, 133(11): 1648−1661. doi: 10.1061/(ASCE)0733-9445(2007)133:11(1648) Palermo A., Pampanin S., 2008. Enhanced seismic performance of hybrid bridge systems: Comparison with traditional monolithic solutions. Journal of Earthquake Engineering, 12(8): 1267−1295. doi: 10.1080/13632460802003819 Thonstad T., Mantawy I. M., Stanton J. F., et al., 2016. Shaking table performance of a new bridge system with pretensioned rocking columns. Journal of Bridge Engineering, 21(4): 04015079. doi: 10.1061/(ASCE)BE.1943-5592.0000867 Wen Y. K., 1976. Method for random vibration of hysteretic systems. Journal of the Engineering Mechanics Division, 102(2): 249−263. doi: 10.1061/JMCEA3.0002106 Zhou Y. L., Han Q., Du X. L., et al., 2019. Shaking table tests of post-tensioned rocking bridge with double-column bents. Journal of Bridge Engineering, 24(8): 04019080. doi: 10.1061/(ASCE)BE.1943-5592.0001456 Zhou Y. L., Han Q., Du X. L., et al., 2021. Additional viscous dampers for double-column rocking bridge system: Seismic response and overturning analysis. Soil Dynamics and Earthquake Engineering, 141: 106504. doi: 10.1016/j.soildyn.2020.106504