Main Mechanism and Influencing Factors of Earthquakes Induced by Hydraulic Fracturing for Shale Gas Exploitation
-
摘要: 随着水力压裂技术的发展与应用,各地区页岩气开采区的地震活动显著增强,且中等以上地震明显增多,严重影响工业和人类活动,为确保安全、绿色的页岩气开采,避免或减少破坏性地震活动,研究诱发地震机理和影响因素具有重要意义。为此总结美国、加拿大和我国典型页岩气开采区地震活动特征,并结合断层力学与莫尔-库仑破坏准则,较为系统地分析了目前对水力压裂技术诱发地震机制的主要认识,以及诱发地震的影响因素。研究结果表明,基于莫尔-库仑准则可以在宏观上解释注入式诱发地震活动,断层面摩擦系数、正应力、剪切应力和孔隙压力的变化都可能影响诱发地震活动的发生;在断层与诱发地震相对关系方面,地震活动有3种诱发机制,包括孔隙压力作用下的断层活化、孔隙弹性效应导致的断层活化、无震滑动引起的断层活化;诱发地震活动不仅与流体注入参数有关,还取决于区域断层孕震情况和应力状态等条件。目前由于影响水力压裂作用下断层剪切破裂起始及扩展的因素尚不完整,同时也缺乏有力的试验验证,有必要开展水力压裂试验工作,模拟页岩气开采过程中流体加载和应力边界等条件,进一步确定断层剪切破裂的驱动机制和关键影响因素。Abstract: With the development and application of hydraulic fracturing technology, the seismic activity in shale gas mining areas in various regions has obviously increased especially those above moderate level, seriously affecting industrial and human activities. In order to ensure safe and green shale gas exploitation and avoid or reduce destructive seismic activity, it is of great significance to study the mechanism and influencing factors of hydraulic fracturing induced earthquakes. By summarizing the seismic activity characteristics of typical shale gas mining areas in the United States, Canada and China, and combining fault mechanics and Coulomb-Mohr failure criteria, this paper systematically sorts out the main mechanisms and the influencing factors of hydraulic fracturing induced earthquakes. The conclusion and analysis show that injection-induced seismicity can be explained macroscopically based on Coulomb-Mohr criterion, and the changes of friction coefficient of a fault, normal stress,shear stress and pore pressure in reservoir area can affect the occurrence of induced seismicity. From the relative relationship between faults and induced earthquakes, there are three possible mechanisms: the first is the fault activation caused by pore pressure change, the second is the fault activation caused by pore elasticity effect, and the third is the fault activation caused by aseismic slip. Induced seismicity is not only related to fluid injection parameters, but also depends on conditions such as seismogenic background and stress state of regional faults. At present, due to the incomplete factors affecting the initiation and propagation of fault shear fracture under hydraulic fracturing, and the lack of strong experimental verification, it is necessary to carry out hydraulic fracturing experiments to simulate the conditions such as fluid loading and stress boundary during shale gas production, and further determine the driving mechanism and key influencing factors of fault shear fracture.
-
图 1 可能引起地面沉降和断层活化的油气开发地下活动(Morton等,2006)
Figure 1. Oil and gas development subsurface events that may induce land subsidence and reactivate faults (from Morton et al., 2006)
图 2 美国中部与东部1973—2015年3级以上地震数目(Rubinstein等,2015)
Figure 2. Number of M≥3 earthquakes in the central and eastern United States from 1973 to 2015 (from Rubinstein et al., 2015)
图 3 Fox Creek西南地区100 km以内累计震级大于2.5级地震事件(Schultz等,2017)
Figure 3. Cumulative number of earthquakes greater than magnitude 2.5 within 100 km of the southwest of Fox Creek (from Schultz et al.,2017)
图 4 昭通、长宁地块地震活动统计(Meng等,2019)
Figure 4. Seismicity statistics in Zhaotong and Changning (from Meng et al., 2019)
图 5 诱发地震的3种主要机制(Ellsworth,2013;Eyre等,2019a)
Figure 5. Three main mechanisms of inducing earthquakes (from Ellsworth, 2013; Eyre et al., 2019a)
图 6 断层应力状态变化及典型的破坏机理(Li等,2019)
Figure 6. The typical damage mechanisms caused by change of fault stress state (from Li et al., 2019)
图 7 由于摩擦系数降低和内聚力降低而导致的断层弱化(Yeo等,2020)
Figure 7. Weakening of faults due to reduction of the coefficient of friction and reduced cohesion (from Yeo et al., 2020)
图 8 加拿大Fox Creek地区Duvernay组页岩气开发主要诱发地震(Schultz等,2018)
Figure 8. The main induced earthquakes by shale gas development in Duvernay play, Fox Creek area of Canada (from Schultz et al., 2018)
图 10 油气开采及H储气库注采诱发应力变化预测结果(王成虎等,2020)
Figure 10. Predicted stress changes induced by oil and gas production and injection production in H gas storage (from Wang et al., 2020)
表 1 各地区最大水力压裂诱发地震事件(Atkinson等,2020)
Table 1. The largest seismic events for hydraulic fracturing by region (from Atkinson et al., 2020)
地区 最大震级/级 时间/(年-月-日) 中国,四川盆地(Lei等,2019) ML5.7 2018-12-16 加拿大,British Columbia,Fort St. John(Mahani等,2019) ML4.5 2018-11-29 美国,Texas(Fasola等,2019) M4.0 2018-05-01 加拿大,Alberta,Red Deer(Schultz等,2020) ML4.2 2019-03-04 加拿大,Alberta,Fox Creek(Eyre等,2019a,2019b) M4.1 2015-01-12 加拿大,British Columbia,Horn River(Farahbod等,2015) ML3.8 2011-05-19 美国,Ohio(Brudzinski等,2019) ML3.7 2017-06-03 美国,Oklahoma(Maxwell等,2009) ML3.6 2019-07-25 表 2 四川盆地页岩气开采诱发地震最大震级(Lei等,2017,2019;Meng等,2019)
Table 2. Statistics of maximum magnitude of earthquakes induced by shale gas exploitation in Sichuan Basin (from Lei et al., 2017,2019; Meng et al., 2019)
地点 纬度/(°N) 经度/(°E) MW 时间/(年-月-日) 震源深度Z/m N201~H24井场,兴文县 28.21 104.93 5.2 2018-12-16 3 090 N201~H18井场,珙县 28.20 104.70 4.8 2019-01-03 1 840 H7井场,珙县上罗镇 28.13 104.75 4.67 2017-01-28 1 800 威远县 29.52 104.83 3.4 2016 3 090 -
曹锡秋,2013. 新疆某地衰竭气藏地下储气库地应力特征研究. 北京:中国地质大学(北京).Cao X. Q., 2013. A research on reservoir geomechanic features of a gas storage in Xinjiang after natural depletion. Beijing:China University of Geosciences (Beijing). (in Chinese) 方小美,陈明霜,2011. 页岩气开发将改变全球天然气市场格局−−美国能源信息署(EIA)公布全球页岩气资源初评结果. 国际石油经济,19(6):40−44. doi: 10.3969/j.issn.1004-7298.2011.06.009Fang X. M., Chen M. S., 2011. Shale gas development will change the global natural gas market−−the U. S. Energy Information Administration’s (EIA) release of results of an initial evaluation of global shale gas resources. International Petroleum Economics, 19(6): 40−44. (in Chinese) doi: 10.3969/j.issn.1004-7298.2011.06.009 何登发,鲁人齐,黄涵宇等,2019. 长宁页岩气开发区地震的构造地质背景. 石油勘探与开发,46(5):993−1006. doi: 10.11698/PED.2019.05.19He D. F., Lu R. Q., Huang H. Y., et al., 2019. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone, Sichuan Basin, SW China. Petroleum Exploration and Development, 46(5): 993−1006. (in Chinese) doi: 10.11698/PED.2019.05.19 刘贺娟,童荣琛,侯正猛等,2022. 地下流体注采诱发地震综述及对深部高温岩体地热开发的影响. 工程科学与技术,54(1):83−96.Liu H. J., Tong R. C., Hou Z. M., et al., 2022. Review of induced seismicity caused by subsurface fluid injection and production and impacts on the geothermal energy production from deep high temperature rock. Advanced Engineering Sciences, 54(1): 83−96. (in Chinese) 王成虎,高桂云,贾晋等,2020. H储气库注采诱发应力场及断层滑动趋势变化. 天然气工业,40(10):76−85. doi: 10.3787/j.issn.1000-0976.2020.10.009Wang C. H., Gao G. Y., Jia J., et al., 2020. Variation of stress field and fault slip tendency induced by injection and production in the H underground gas storage. Natural Gas Industry, 40(10): 76−85. (in Chinese) doi: 10.3787/j.issn.1000-0976.2020.10.009 吴晓智,王立宏,宋志理,2000. 准噶尔盆地南缘构造应力场与油气运聚的关系. 新疆石油地质,21(2):97−100. doi: 10.3969/j.issn.1001-3873.2000.02.002Wu X. Z., Wang L. H., Song Z. L., 2000. The relations between structural stress field and hydrocarbon migration and accumulation in southern margin of Junggar basin. Xinjiang Petroleum Geology, 21(2): 97−100. (in Chinese) doi: 10.3969/j.issn.1001-3873.2000.02.002 夏威峰,2015. 准噶尔盆地南缘霍玛吐背斜带紫三段油气储层综合评价. 荆州:长江大学.Xia W. F., 2015. Evaluation of E2-3 z 3 reservoir in Huomatu anticlinal zone in the Southern Margin of Junggar Basin. Jingzhou:Yangtze University. (in Chinese) 谢富仁,崔效锋,赵建涛等,2004. 中国大陆及邻区现代构造应力场分区. 地球物理学报,47(4):654−662. doi: 10.3321/j.issn:0001-5733.2004.04.016Xie F. R., Cui X. F., Zhao J. T., et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas. Chinese Journal of Geophysics, 47(4): 654−662. (in Chinese) doi: 10.3321/j.issn:0001-5733.2004.04.016 张捷,况文欢,张雄等,2021. 全球油气开采诱发地震的研究现状与对策. 地球与行星物理论评,52(3):239−265.Zhang J., Kuang W. H., Zhang X., et al., 2021. Global review of induced earthquakes in oil and gas production fields. Reviews of Geophysics and Planetary Physics, 52(3): 239−265. (in Chinese) 张致伟,乔慧珍,吴朋等,2015. 注水诱发地震的谱振幅相关系数及视应力研究. 地震研究,38(1):42−50. doi: 10.3969/j.issn.1000-0666.2015.01.006Zhang Z. W., Qiao H. Z., Wu P., et al., 2015. Study on correlation coefficient of spectral amplitude and apparent stress of water injection induced earthquake. Journal of Seismological Research, 38(1): 42−50. (in Chinese) doi: 10.3969/j.issn.1000-0666.2015.01.006 邹才能,赵群,丛连铸等,2021. 中国页岩气开发进展、潜力及前景. 天然气工业,41(1):1−14.Zou C. N., Zhao Q., Cong L. Z., et al., 2021. Development progress, potential and prospect of shale gas in China. Natural Gas Industry, 41(1): 1−14. (in Chinese) Atkinson G. M., Eaton D. W., Ghofrani H., et al., 2016. Hydraulic fracturing and seismicity in the western Canada sedimentary basin. Seismological Research Letters, 87(3): 631−647. doi: 10.1785/0220150263 Atkinson G. M., Eaton D. W., Igonin N., 2020. Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth & Environment, 1(5): 264−277. Azad M., Garagash D. I., Satish M., 2017. Nucleation of dynamic slip on a hydraulically fractured fault. Journal of Geophysical Research: Solid Earth, 122(4): 2812−2830. doi: 10.1002/2016JB013835 Bao X. W., Eaton D. W., 2016. Fault activation by hydraulic fracturing in western Canada. Science, 354(6318): 1406−1409. doi: 10.1126/science.aag2583 Brudzinski M. R., Kozłowska M., 2019. Seismicity induced by hydraulic fracturing and wastewater disposal in the Appalachian Basin, USA: a review. Acta Geophysica, 67(1): 351−364. doi: 10.1007/s11600-019-00249-7 Catalli F., Meier M. A., Wiemer S., 2013. The role of Coulomb stress changes for injection-induced seismicity: the Basel enhanced geothermal system. Geophysical Research Letters, 40(1): 72−77. doi: 10.1029/2012GL054147 Chang K. W., Segall P., 2016. Seismicity on basement faults induced by simultaneous fluid injection–extraction. Pure and Applied Geophysics, 173(8): 2621−2636. doi: 10.1007/s00024-016-1319-7 Deng K., Liu Y. J., Harrington R. M., 2016. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence. Geophysical Research Letters, 43(16): 8482−8491. doi: 10.1002/2016GL070421 Eaton D. W., van der Baan M., Birkelo B., et al., 2014. Scaling relations and spectral characteristics of tensile microseisms: evidence for opening/closing cracks during hydraulic fracturing. Geophysical Journal International, 196(3): 1844−1857. doi: 10.1093/gji/ggt498 Eaton D. W., Schultz R., 2018. Increased likelihood of induced seismicity in highly overpressured shale formations. Geophysical Journal International, 214(1): 751−757. doi: 10.1093/gji/ggy167 Ellsworth W. L., 2013. Injection-induced earthquakes. Science, 341(6142): 1225942. doi: 10.1126/science.1225942 Eyre T. S., Eaton D. W., Garagash D. I., et al., 2019a. The role of aseismic slip in hydraulic fracturing-induced seismicity. Science Advances, 5(8): eaav7172. doi: 10.1126/sciadv.aav7172 Eyre T. S., Eaton D. W., Zecevic M., et al., 2019b. Microseismicity reveals fault activation before MW 4.1 hydraulic-fracturing induced earthquake. Geophysical Journal International, 218(1): 534−546. doi: 10.1093/gji/ggz168 Farahbod A. M., Kao H., Walker D. M., et al., 2015. Investigation of regional seismicity before and after hydraulic fracturing in the Horn River Basin, northeast British Columbia. Canadian Journal of Earth Sciences, 52(2): 112−122. doi: 10.1139/cjes-2014-0162 Fasola S. L., Brudzinski M. R., Skoumal R. J., et al., 2019. Hydraulic fracture injection strategy influences the probability of earthquakes in the Eagle Ford shale play of South Texas. Geophysical Research Letters, 46(22): 12958−12967. doi: 10.1029/2019GL085167 Ferronato M., Gambolati G., Janna C., et al., 2010. Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields. Energy Conversion and Management, 51(10): 1918−1928. doi: 10.1016/j.enconman.2010.02.024 Foulger G. R., Wilson M. P., Gluyas J. G., et al., 2018. Global review of human-induced earthquakes. Earth-Science Reviews, 178: 438−514. doi: 10.1016/j.earscirev.2017.07.008 Göbel T., 2015. A comparison of seismicity rates and fluid-injection operations in Oklahoma and California: implications for crustal stresses. The Leading Edge, 34(6): 640−648. doi: 10.1190/tle34060640.1 Goebel T. H. W., Weingarten M., Chen X., et al., 2017. The 2016 MW5.1 Fairview, Oklahoma earthquakes: evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters, 472: 50−61. doi: 10.1016/j.jpgl.2017.05.011 King G. C. P., Devès M. H., 2015. 4.10 - Fault interaction, earthquake stress changes, and the evolution of seismicity. Treatise on Geophysics (Second Edition), 4: 243−271. Langenbruch C. , Zoback M. D. , 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Science Advances, 2 (11): e1601542. Lei X. L., Huang D. J., Su J. R., et al., 2017. Fault reactivation and earthquakes with magnitudes of up to MW4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Scientific Reports, 7(1): 7971. doi: 10.1038/s41598-017-08557-y Lei X. L., Wang Z. W., Su J. R., 2019. The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in South Sichuan Basin Induced by shale gas hydraulic fracturing. Seismological Research Letters, 90(3): 1099−1110. doi: 10.1785/0220190029 Li L., Tan J. Q., Wood D. A., et al., 2019. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel, 242: 195−210. doi: 10.1016/j.fuel.2019.01.026 Li T., Cai M. F., Cai M., 2007. A review of mining-induced seismicity in China. International Journal of Rock Mechanics and Mining Sciences, 44(8): 1149−1171. doi: 10.1016/j.ijrmms.2007.06.002 Llenos A. L., Michael A. J., 2013. Modeling earthquake rate changes in Oklahoma and Arkansas: possible signatures of induced seismicity. Bulletin of the Seismological Society of America, 103(5): 2850−2861. doi: 10.1785/0120130017 Mahani A. B., Kao H., Atkinson G. M., et al., 2019. Ground-motion characteristics of the 30 November 2018 injection-induced earthquake sequence in Northeast British Columbia, Canada. Seismological Research Letters, 90(4): 1457−1467. Maxwell S. C., Jones M., Parker R., et al., 2009. Fault activation during hydraulic fracturing. In: Proceedings of the SEG Technical Program Expanded Abstracts 2009. Houston, Texas: SEG,1552−1556. McGarr A., 1976. Seismic moments and volume changes. Journal of Geophysical Research, 81(8): 1487−1494. doi: 10.1029/JB081i008p01487 McGarr A., Simpson D., Seeber L., 2002. 40 - Case histories of induced and triggered seismicity. International Geophysics, 81: 647−661. Meng L. Y., McGarr A., Zhou L. Q., et al., 2019. An investigation of seismicity induced by hydraulic fracturing in the Sichuan basin of China based on data from a temporary seismic network. Bulletin of the Seismological Society of America, 109(1): 348−357. doi: 10.1785/0120180310 Morton R. A., Bernier J. C., Barras J. A., 2006. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environmental Geology, 50(2): 261−274. doi: 10.1007/s00254-006-0207-3 Nicol A., Carne R., Gerstenberger M., et al., 2011. Induced seismicity and its implications for CO2 storage risk. Energy Procedia, 4: 3699−3706. doi: 10.1016/j.egypro.2011.02.302 Pawley S., Schultz R., Playter T., et al., 2018. The geological susceptibility of induced earthquakes in the Duvernay play. Geophysical Research Letters, 45(4): 1786−1793. doi: 10.1002/2017GL076100 Qiao X. J., Chen W., Wang D. J., et al., 2018. Crustal deformation in the Hutubi underground gas storage site in China observed by GPS and InSAR measurements. Seismological Research Letters, 89(4): 1467−1477. doi: 10.1785/0220170221 Raleigh C. B., Healy J. H., Bredehoeft J. D., 1976. An experiment in earthquake control at rangely, Colorado. Science, 191(4233): 1230−1237. doi: 10.1126/science.191.4233.1230 Rogner H. H., 1997. An assessment of world hydrocarbon resources. Annual Review of Energy and the Environment, 22(1): 217−262. doi: 10.1146/annurev.energy.22.1.217 Rubinstein J. L., Mahani A. B., 2015. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismological Research Letters, 86(4): 1060−1067. doi: 10.1785/0220150067 Rutqvist J., Birkholzer J. T., Tsang C. F., 2008. Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems. International Journal of Rock Mechanics and Mining Sciences, 45(2): 132−143. doi: 10.1016/j.ijrmms.2007.04.006 Schultz R., Wang R. J., Gu Y. J., et al., 2017. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta. Journal of Geophysical Research: Solid Earth, 122(1): 492−505. doi: 10.1002/2016JB013570 Schultz R., Atkinson G., Eaton D. W., et al., 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science, 359(6373): 304−308. doi: 10.1126/science.aao0159 Schultz R., Wang R. J., 2020. Newly emerging cases of hydraulic fracturing induced seismicity in the Duvernay East Shale Basin. Tectonophysics, 779: 228393. doi: 10.1016/j.tecto.2020.228393 Segall P., Lu S., 2015. Injection-induced seismicity: poroelastic and earthquake nucleation effects. Journal of Geophysical Research: Solid Earth, 120(7): 5082−5103. doi: 10.1002/2015JB012060 Shapiro S. A., Dinske C., 2007. Violation of the Kaiser effect by hydraulic-fracturing-related microseismicity. Journal of Geophysics and Engineering, 4(4): 378−383. doi: 10.1088/1742-2132/4/4/003 Shapiro S. A., Dinske C., 2009. Fluid-induced seismicity: pressure diffusion and hydraulic fracturing. Geophysical Prospecting, 57(2): 301−310. doi: 10.1111/j.1365-2478.2008.00770.x Shapiro S. A., Dinske C., Langenbruch C., et al., 2010. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations. The Leading Edge, 29(3): 304−309. doi: 10.1190/1.3353727 Skoumal R. J., Ries R., Brudzinski M. R., et al., 2018. Earthquakes induced by hydraulic fracturing are pervasive in Oklahoma. Journal of Geophysical Research: Solid Earth, 123(12): 10918−10935. Stiros S. C., Kontogianni V. A., 2009. Coulomb stress changes: from earthquakes to underground excavation failures. International Journal of Rock Mechanics and Mining Sciences, 46(1): 182−187. doi: 10.1016/j.ijrmms.2008.09.013 Tang L. L., Lu Z., Zhang M., et al., 2018. Seismicity induced by simultaneous abrupt changes of injection rate and well pressure in Hutubi gas field. Journal of Geophysical Research: Solid Earth, 123(7): 5929−5944. doi: 10.1029/2018JB015863 van der Elst N. J., Savage H. M., Keranen K. M., et al., 2013. Enhanced remote earthquake triggering at fluid-injection sites in the Midwestern United States. Science, 341(6142): 164−167. doi: 10.1126/science.1238948 Walsh F. R., Zoback M. D., 2015. Oklahoma’s recent earthquakes and saltwater disposal. Science Advances, 1(5): e1500195. doi: 10.1126/sciadv.1500195 Wang B., Harrington R. M., Liu Y. J., et al., 2019. Remote dynamic triggering of earthquakes in three unconventional Canadian hydrocarbon regions based on a multiple-station matched-filter approach. Bulletin of the Seismological Society of America, 109(1): 372−386. doi: 10.1785/0120180164 Wang R. J., Gu Y. J., Schultz R., et al., 2017. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta. Geophysical Journal International, 210(2): 979−988. doi: 10.1093/gji/ggx204 Yeo I. W., Brown M. R. M., Ge S., et al., 2020. Causal mechanism of injection-induced earthquakes through the MW 5.5 Pohang earthquake case study. Nature Communications, 11(1): 2614. doi: 10.1038/s41467-020-16408-0