• ISSN 1673-5722
  • CN 11-5429/P

柴达木盆地南缘断裂晚第四纪活动性

贾启超 刘华国 龚飞 李峰 李昌隆 张攀

贾启超,刘华国,龚飞,李峰,李昌隆,张攀,2024. 柴达木盆地南缘断裂晚第四纪活动性. 震灾防御技术,19(3):486−493. doi:10.11899/zzfy20240307. doi: 10.11899/zzfy20240307
引用本文: 贾启超,刘华国,龚飞,李峰,李昌隆,张攀,2024. 柴达木盆地南缘断裂晚第四纪活动性. 震灾防御技术,19(3):486−493. doi:10.11899/zzfy20240307. doi: 10.11899/zzfy20240307
Jia Qichao, Liu Huaguo, Gong Fei, Li Feng, Li Changlong, Zhang Pan. The Study of Late Quaternary Activity of the Southern Margin of Qaidam Basin Fault[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 486-493. doi: 10.11899/zzfy20240307
Citation: Jia Qichao, Liu Huaguo, Gong Fei, Li Feng, Li Changlong, Zhang Pan. The Study of Late Quaternary Activity of the Southern Margin of Qaidam Basin Fault[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 486-493. doi: 10.11899/zzfy20240307

柴达木盆地南缘断裂晚第四纪活动性

doi: 10.11899/zzfy20240307
基金项目: 我国地震重点监视防御区活动断层地震危险性评价(1521044025);中国地震局城市活断层探测与地震危险性评价项目(2150616030203)
详细信息
    作者简介:

    贾启超,男,生于1989年。工程师。主要从事地震地质和工程地震等方面的研究。E-mail:jiaqichao1988@163.com

    通讯作者:

    刘华国,男,生于1982年。正研级高级工程师。主要从事活动构造、工程地震与震防数据信息化建设方面的研究。E-mail:cedpclhg@163.com

  • 12 青岛市工程地震研究所,2017. 格尔木市地震小区划.
  • 23 青海省石油管理局,1986. 青海省柴达木盆地区域构造特征—柴达木盆地地震反射区域大剖面综合解释报告之一.

The Study of Late Quaternary Activity of the Southern Margin of Qaidam Basin Fault

  • 摘要: 柴达木盆地南缘断裂是柴达木盆地与东昆仑构造带的分界断裂,断裂带西起甘森镇乌拉尔,终止于诺木洪以东,全长约500 km。以往对南缘断裂研究程度较低,且活动性存在争议。前人普遍认为柴达木盆地南缘断裂为隐伏断裂,本研究首次发现该断裂在小灶火段发育出露地表的断层陡坎。通过在小灶火段断层陡坎上挖掘探槽,在格尔木以南的隐伏段采用浅层人工地震结合钻孔联合剖面探测的方法,使用OSL测年方法对地层年龄进行分析测试,探究了断裂活动性。结果表明柴达木盆地南缘断裂小灶火段为晚更新世活动断层,格尔木隐伏段不活动。
    1)  12 青岛市工程地震研究所,2017. 格尔木市地震小区划.
    2)  23 青海省石油管理局,1986. 青海省柴达木盆地区域构造特征—柴达木盆地地震反射区域大剖面综合解释报告之一.
  • 图  1  柴达木盆地南缘构造

    Figure  1.  Sketch tectonic map of the southern fringe of Qaidam basin

    图  2  97424石油地震测线时间剖面变密度图

    Figure  2.  Petroleum seismic survey profile 97424

    图  3  地球物理勘探测线分布

    Figure  3.  Distribution of geophysical exploration survey lines

    图  4  Glm2测线反射波叠加时间和深度解译剖面

    Figure  4.  Interpretation profile of reflection wave superposition time and depth of line Glm2

    图  5  格尔木河钻孔联合剖面图

    Figure  5.  The composite drilling section near Golmud river

    图  6  断层地貌及地形测量

    Figure  6.  The fault landform and topographic measurement on site

    图  7  小灶火河流阶地遥感影像解译(卫星影像来自Google Earth)

    Figure  7.  Satellite imagery of the fluvial terraces in Xiaozaohuo

    图  8  小灶火探槽剖面

    Figure  8.  Paleo-seismic trench profile of Xiaozaohuo

    表  1  东昆仑北坡河流阶地年龄

    Table  1.   Ages of fluvial terraces in North slope of Eastern Kunlun Mountains

    河流名称 阶地年龄/ka BP 参考文献
    T5 T4 T3 T2 T1
    哈图河 18.4±2.5 13.3±1.2 王岸等(2003
    诺木洪河 21.9±2.9 10.9±1.3 10.4±1.4 王岸等(2003
    昆仑河 23.8±2.28 12.9±1.3 8.8±1.0 4.91±0.1 吴锡浩等(1982
    13.27±0.65
    格尔木河 16.1±2.0 13.0 11.1±1.1 4.3±0.4 陈艺鑫等(2011
    下载: 导出CSV
  • 陈艺鑫,李英奎,张跃等,2011. 末次冰期以来格尔木河填充-切割及驱动机制初探. 第四纪研究,31(2):347−359. doi: 10.3969/j.issn.1001-7410.2011.02.17

    Chen Y. X., Li Y. K., Zhang Y., et al., 2011. Late Quaternary deposition and incision sequences of the Golmud River and their environmental implication. Quaternary Sciences, 31(2): 347−359. (in Chinese) doi: 10.3969/j.issn.1001-7410.2011.02.17
    段博儒,郭安宁,2020. 青藏高原西北地区与南北地震带地震活动性研究. 地震工程学报,42(5):1077−1084. doi: 10.3969/j.issn.1000-0844.2020.05.1077

    Duan B. R., Guo A. N., 2020. Seismicity in the northwestern Tibetan Plateau and north-south seismic belt. China Earthquake Engineering Journal, 42(5): 1077−1084. (in Chinese) doi: 10.3969/j.issn.1000-0844.2020.05.1077
    高锐,成湘洲,丁谦,1995. 格尔木−额济纳旗地学断面地球动力学模型初探. 地球物理学报,38(S2):3−14.

    Gao R., Cheng X. Z., Ding. Q., 1995. Preliminary geodynamic model of Golmud Piin Qi geoscience transect-Ejin Qi geoscience transect. Acta Geophysical Sinica, 38(S2): 3−14. (in Chinese)
    高锐,李朋武,李秋生等,2001. 青藏高原北缘碰撞变形的深部过程−−深地震探测成果之启示. 中国科学D辑:地球科学, 31 (S1):66−71.

    Gao R., Li P. W., Li Q. S., et al., 2001. Deep process of the collision and deformation on the northern margin of the Tibetan Plateau:revelation from investigation of the deep seismic profiles. Science in China Series D:Earth Sciences, 44 (1):71−78. (in Chinese)
    李国佑,姚家骏,2017. 2014年10月2日青海乌兰5.1级地震震源机制、震源深度的确定. 地震研究,40(1):88−93. doi: 10.3969/j.issn.1000-0666.2017.01.013

    Li G. Y., Yao J. J., 2017. The determination of focal mechanism and focal depth of the Wulan Earthquake, Oct. 2, 2014. Journal of Seismological Research, 40(1): 88−93. (in Chinese) doi: 10.3969/j.issn.1000-0666.2017.01.013
    刘华国,贾启超,龚飞,2022. 鄂尔多斯北缘断裂托克托段晚第四纪活动特征. 震灾防御技术,17(2):242−251. doi: 10.11899/j.issn.1673-5722.2022.2.zzfyjs202202005

    Liu H. G., Jia Q. C., Gong F., 2022. Late Quaternary activity characteristics of Tuoketuo section of the Ordos northern fault. Technology for Earthquake Disaster Prevention, 17(2): 242−251. (in Chinese) doi: 10.11899/j.issn.1673-5722.2022.2.zzfyjs202202005
    汤良杰,金之钧,戴俊生等,2002. 柴达木盆地及相邻造山带区域断裂系统. 地球科学−中国地质大学学报,27(6):676−682.

    Tang L. J., Jin Z. J., Dai J. S., et al., 2002. Regional fault systems of Qaidam Basin and adjacent orogenic belts. Earth Science−Journal of China University of Geosciences, 27(6): 676−682. (in Chinese)
    王岸,王国灿,向树元,2003. 东昆仑山东段北坡河流阶地发育及其与构造隆升的关系. 地球科学−中国地质大学学报,28(6):675−679.

    Wang A., Wang G. C., Xiang S. Y., 2003. Characteristics of river terraces in north slope of eastern Kunlun Mountains and their relationship with plateau uplift. Earth Science−Journal of China University of Geosciences, 28(6): 675−679. (in Chinese)
    吴锡浩,钱方,1982. 格尔木河水系河谷地貌. 青藏高原地质文集,(1):71−86.

    Wu X. H., Qian F., 1982. The landform of the Golmud River drainage. The Editorial Committee on the Tibetan Plateau Geological Papers, (1): 71−86. (in Chinese)
    尹安,党玉琪,陈宣华等,2007. 柴达木盆地新生代演化及其构造重建−−基于地震剖面的解释. 地质力学学报,13(3):193−211. doi: 10.3969/j.issn.1006-6616.2007.03.001

    Yin A., Dang Y. Q., Chen X. H., et al., 2007. Cenozoic evolution and tectonic reconstruction of the Qaidam Basin: evidence from seismic profiles. Journal of Geomechanics, 13(3): 193−211. (in Chinese) doi: 10.3969/j.issn.1006-6616.2007.03.001
    袁道阳,2003. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化. 北京:中国地震局地质研究所.

    Yuan D. Y. ,2003. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan Plateau since the Late Cenozoic time. Beijing:Institute of Geology,China Earthquake Administration. (in Chinese)
    张扬,郭大伟,张涛等,2022. 新乡-商丘断裂永城段第四纪活动特征分析. 震灾防御技术,17(2):208−218. doi: 10.11899/j.issn.1673-5722.2022.2.zzfyjs202202002

    Zhang Y., Guo D. W., Zhang T., et al., 2022. Characteristics of quaternary activity in the Yongcheng segment of the Xinxiang-Shangqiu fault. Technology for Earthquake Disaster Prevention, 17(2): 208−218. (in Chinese) doi: 10.11899/j.issn.1673-5722.2022.2.zzfyjs202202002
    周保,彭建兵,张骏,2009. 青海省活动断裂带分布发育特征研究. 工程地质学报,17(5):612−618. doi: 10.3969/j.issn.1004-9665.2009.05.005

    Zhou B., Peng J. B., Zhang J., 2009. Development and distribution patterns of active fault zones in Qinghai Province. Journal of Engineering Geology, 17(5): 612−618. (in Chinese) doi: 10.3969/j.issn.1004-9665.2009.05.005
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  14
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回