• ISSN 1673-5722
  • CN 11-5429/P

地表土层破裂形态试验与分析

彭龙强 张恒 徐龙军 谢礼立

彭龙强,张恒,徐龙军,谢礼立,2024. 地表土层破裂形态试验与分析. 震灾防御技术,19(3):468−477. doi:10.11899/zzfy20240305. doi: 10.11899/zzfy20240305
引用本文: 彭龙强,张恒,徐龙军,谢礼立,2024. 地表土层破裂形态试验与分析. 震灾防御技术,19(3):468−477. doi:10.11899/zzfy20240305. doi: 10.11899/zzfy20240305
Peng Longqiang, Zhang Heng, Xu Longjun, Xie Lili. Experiment and Analysis of Surface Soil Rupture Pattern[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 468-477. doi: 10.11899/zzfy20240305
Citation: Peng Longqiang, Zhang Heng, Xu Longjun, Xie Lili. Experiment and Analysis of Surface Soil Rupture Pattern[J]. Technology for Earthquake Disaster Prevention, 2024, 19(3): 468-477. doi: 10.11899/zzfy20240305

地表土层破裂形态试验与分析

doi: 10.11899/zzfy20240305
基金项目: 国家自然科学基金(U2139207)
详细信息
    作者简介:

    彭龙强,男,生于1997年。硕士研究生。主要从事地震工程研究工作。E-mail:974843572@qq.com

    通讯作者:

    徐龙军,男,生于1976年。教授,博士生导师。主要从事防灾减灾工程研究。E-mail:xulj@jhun.edu.cn

Experiment and Analysis of Surface Soil Rupture Pattern

  • 摘要: 近年来地震频发,研究断层区土体破裂形态是了解和认识地震断层破坏机制的关键。为研究不同断层类型对地表形态的影响,通过模型试验得到拉伸型断层、挤压型断层以及剪切型走滑断层的地表土层形态,同时对走滑断层进行了数值模拟计算,并与试验结果进行了对比。由试验结果可知,在拉伸型断层中,地表纵向拉伸变形随土层厚度的增大而减小。挤压型断层中,随着土层厚度的增大,地表纵向压缩变形减小,且减小趋势逐渐变缓,地表隆起区宽度和隆起高度随之增加。在走滑断层中,地表位错量随着土层厚度的增大而减小,且随着土层厚度的增大,地表变形影响区范围呈先增加后减小的趋势。数值模拟计算结果与走滑断层试验结果基本一致。
  • 图  1  试验装置

    Figure  1.  Testing device

    图  2  白线布置

    Figure  2.  White line layout diagram

    图  3  拉伸型断层试验地表土层变形图

    Figure  3.  Deformation diagram of surface soil layer for tensile type fault test

    图  4  不同土层厚度下白线长度和拉伸率变化

    Figure  4.  Variation of white line length and stretch rate with different soil thickness

    图  5  挤压型断层试验的地表土层变形图

    Figure  5.  Deformation diagram of surface soil layer for extrusion-type fault test

    图  6  不同土层厚度下白线长度和挤压率变化

    Figure  6.  Variation of white line length and extrusion rate with different soil thickness

    图  7  不同土层厚度下土层表面隆起区宽度变化

    Figure  7.  Variation of the width of the soil surface uplift zone with different soil thickness

    图  8  不同土层厚度下土层表面隆起高度变化

    Figure  8.  Variation of soil surface elevation height with different soil thickness

    图  9  走滑断层试验中地表土层变形情况

    Figure  9.  Deformation diagram of surface soil layer of Strike-slip fault test

    图  10  不同土层厚度下地表位错量沿断层线分布情况

    Figure  10.  The maximum and minimum displacement changes of white line stagger under different soil layer heights

    图  11  不同土层厚度下土层表面变形影响区宽度变化

    Figure  11.  Variation of width of affected deformation zone on soil surface with different soil layer thickness

    图  12  有限元模型(单位:毫米)

    Figure  12.  Finite element model(Unit:mm)

    图  13  土层表面总位移云图

    Figure  13.  Total displacement cloud map of soil surface

    图  14  数值模拟与实验结果对比

    Figure  14.  Comparison between numerical simulation and experimental results

    表  1  材料参数

    Table  1.   Material parameters

    密度ρ/(g·cm−3) 黏聚力c/kPa 内摩擦角Φ/(°) 平均粒径
    d50/mm
    有效粒径
    d10/mm
    土粒
    比重Gs
    最大孔
    隙比emax
    最小孔
    隙比emin
    弹性模量
    E/kPa
    泊松比μ
    1.52 7 30 0.253 0.008 2.67 0.919 0.411 20000 0.25
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Test conditions

    断层类型断层预留宽度/cm断层错动方向断层错动距离/cm土层厚度/cm
    拉伸型断层0左盘向左65、10、15、20
    挤压型断层6左盘向右65、10、15、20
    走滑断层0右旋35、10、15、20、25
    下载: 导出CSV
  • 刘学增,滨田政则,2004. 活断层破坏在土体中传播的试验研究. 岩土工程学报,26(3):425−427. doi: 10.3321/j.issn:1000-4548.2004.03.027

    Liu X. Z., Bin T. Z. Z., 2004. Experiments on rupture propagation of active faults in soil. Chinese Journal of Geotechnical Engineering, 26(3): 425−427. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.03.027
    沈超,2020. 强震逆断层地表破裂的离心模型试验研究. 哈尔滨:中国地震局工程力学研究所.

    Shen C., 2020. Centrifuge tests on ground surface rupture induced by strong earthquake. Harbin:Institute of Engineering Mechanics,China Earthquake Administration. (in Chinese)
    沈超,薄景山,李琪等,2022. 常重力模型实验在模拟断层错动中的应用. 地震工程与工程振动,42(1):122−131.

    Shen C., Bo J. S., Li Q., et al., 2022. Application of 1g-model experiment in simulating fault movement. Earthquake Engineering and Engineering Dynamics, 42(1): 122−131. (in Chinese)
    石吉森,2017. 对断层错动引发上覆土层和隧道破坏的试验与数值研究. 杭州:浙江大学.

    Shi J. S., 2017. Model tests and numerical study on the destructions of overlaying soil and tunnels by faulting. Hangzhou:Zhejiang University. (in Chinese)
    王强,2021. 强震地表破裂变形试验与数值模拟. 廊坊:防灾科技学院.

    Wang Q., 2021. Experiment and numerical simulation of surface rupture deformation under strong earthquake. Langfang:Institute of Disaster Prevention. (in Chinese)
    徐龙军,彭龙强,谢礼立,2023. 地震断层形态研究综述. 世界地震工程,39(1):28−37.

    Xu L. J., Peng L. Q., Xie L. L., 2023. Review of rupture morphology of seismic faults. World Earthquake Engineering, 39(1): 28−37. (in Chinese)
    Ahmadi M. , Moosavi M. , Jafari M. K. , 2017. Water content effect on the fault rupture propagation through wet soil-using direct shear tests. In: Ferrari A. , Laloui L. , eds. , Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS). Cham: Springer, 131−138.
    Ahmadi M., Moosavi M., Jafari M. K., 2018a. Experimental investigation of reverse fault rupture propagation through cohesive granular soils. Geomechanics for Energy and the Environment, 14: 61−65. doi: 10.1016/j.gete.2018.04.004
    Ahmadi M., Moosavi M., Jafari M. K., 2018b. Experimental investigation of reverse fault rupture propagation through wet granular soil. Engineering Geology, 239: 229−240. doi: 10.1016/j.enggeo.2018.03.032
    Asano K. , Iwata T. , 2016. Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth, Planets and Space, 68 (1): 147.
    Emmons R. C., 1969. Strike-slip rupture patterns in sand models. Tectonophysics, 7(1): 71−87. doi: 10.1016/0040-1951(69)90065-1
    Johansson J., Konagai K., 2004. Fault induced permanent ground deformations−simulations and experimental verification. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver: Canadian Association for Earthquake Engineering, 1−15.
    Johansson J., Konagai K., 2006. Fault induced permanent ground deformations−an experimental comparison of wet and dry soil and implications for buried structures. Soil Dynamics and Earthquake Engineering, 26(1): 45−53. doi: 10.1016/j.soildyn.2005.08.003
    Kubo H. , Suzuki W. , Aoi S. , et al. , 2016. Source rupture processes of the 2016 Kumamoto, Japan, earthquakes estimated from strong-motion waveforms. Earth, Planets and Space, 68 (1): 161.
    Lee J. W., Hamada M., 2005. An experimental study on earthquake fault rupture propagation through a sandy soil deposit. Structural Engineering, 22(1): 1s−13s. doi: 10.2208/jsceseee.22.1s
    Lee Y. H., Hsieh M. L., Lu S. D., et al., 2003. Slip vectors of the surface rupture of the 1999 Chi-Chi earthquake, western Taiwan. Journal of Structural Geology, 25(11): 1917−1931. doi: 10.1016/S0191-8141(03)00039-7
    Ma K. F. , Lee C. T. , Tsai Y. B. , et al. , 1999. The Chi-Chi, Taiwan earthquake: large surface displacements on an inland thrust fault. Eos, Transactions American Geophysical Union, 80 (50): 605−611.
    Sanford A. R., 1959. Analytical and experimental study of simple geologic structures. GSA Bulletin, 70(1): 19−52. doi: 10.1130/0016-7606(1959)70[19:AAESOS]2.0.CO;2
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-14
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回