Late Quaternary Faulted Landforms and Determination of Slip Rate of Jinqanghe Segment of Maya Snow Mountain Fault
-
摘要: 祁连山东段发育了多条大型活动断裂,如近东西向展布的天桥沟-黄羊川断裂及北西西向展布的金强河断裂、毛毛山断裂、老虎山断裂等,在马雅雪山北麓、宝泉山隆起北缘还发育了一条整体呈北西-北西西向展布的马雅雪山断裂。其中,前人已对天桥沟-黄羊川断裂、金强河断裂、毛毛山断裂、老虎山断裂的晚第四纪活动开展了大量的研究,相比而言,马雅雪山断裂的研究程度还较低,其最新构造活动特征及其与区域主干活动断裂之间的关系等尚不清楚。马雅雪山断裂构成了天祝盆地与南部山体、丘陵的分界线,迹线清晰,断层三角面、断层槽谷多见,局部冲洪积阶地可见线性展布的断层陡坎,显示出断裂在晚第四纪有一定的活动。本研究对马雅雪山断裂西部的金强河段开展了实地调查,重点对马营沟及小黑刺沟2处的阶地断层陡坎开展了高精度地形地貌测量及阶地地貌面定年,对滑动速率进行了厘定。研究结果表明,马雅雪山断裂金强河段晚第四纪活动显著,断裂最近强震活动发生在8.21~3.43 ka BP,晚更新世晚期以来的垂直滑动速率为0.45~0.63 mm/a。Abstract: Several large active faults have developed in the eastern section of the Qilian Mountains, including the near east-west trending Tianqiaogou-Huangyangchuan fault, the northwest-west trending Jinqianghe fault, Maomaoshan fault, Laohushan fault, and the northwest to northwest-west trending Maya Snow Mountain fault. While extensive research has been conducted on the late Quaternary activity of the Tianqiaogou-Huangyangchuan, Jinqianghe, Maomaoshan, and Laohushan faults, the Maya Snow Mountain fault remains comparatively under-researched, particularly in terms of quantitative studies. The recent activity characteristics and relationship with the regional active faults remain unclear. The Maya Snow Mountain fault, which extends approximately 150 km and passes through Tianzhu city and several villages, serves as the boundary between the Tianzhu basin and the southern mountains and hills. Fault triangles and troughs are common along this fault, and linear fault scarps are visible on some alluvial and proluvial terraces, suggesting activity during the late Quaternary. Given its proximity to populated areas, further investigation into its activity is crucial. In this study, we focus on the Jinqianghe segment of the Maya Snow Mountain fault, located in the fault's western section. We conducted high-precision topographic and geomorphic measurements, dated terraces, and determined fault slip rates at the Maying River and Xiaoheici River fault scarps. Our findings indicate that the Jinqianghe segment of the Maya Snow Mountain Fault was significantly active during the late Quaternary and remains active into the early Holocene. A strong earthquake occurred at 8.21 ~ 3.43 ka BP, with vertical slip rate since the late Pleistocene estimated at 0.45 to 0.63 mm/a.
-
Key words:
- Maya Snow Mountain fault /
- Late Quaternary /
- Faulted landform /
- Slip rate
-
引言
岩石圈磁场是地磁场的重要组成部分,来源于岩石圈居里等温面以上的岩石磁性,其变化受地质结构、构造环境、构造活动、温度与应力状态等多种因素影响。诸多学者已对岩石圈磁场进行相关研究工作,对于空间尺度而言,涵盖全球范围(徐文耀,2003;徐文耀等,2008)、中国大陆地区(杜劲松等,2017;冯丽丽等,2015;王粲等,2017;Ou等,2013)、局部地区(文丽敏等,2017;韶丹等,2015;徐晓雅等,2017;宋成科等,2017;Hemant等,2009)、特定构造带(张忠龙等,2017),数据来源主要为地磁场模型、卫星磁测、航空磁测、地面矢量磁测等。
相对于卫星及航空磁测,地面测量更接近岩石圈磁场物理源,且具备更高的测量精度。在中国地震局经费支持下,流动地磁工作团队已在“冀晋蒙”“京津冀”局部地区开展了流动地磁总强度加密监测工作,布设了规模较大的高精度、高密度测点网络。监测区地处“首都圈”地震重点监视区,地质构造复杂,历史地震多发。观测作业以地磁场总强度F为单一测量要素,其测量精度高于卫星、航空磁测,测点密度优于地面矢量磁测,为相关研究工作提供了高质量数据来源。本文应用相关观测资料,计算观测区域高分辨率F要素岩石圈磁场数值模型(以ΔF表示),研究ΔF空间分布、地震地质特征,并重点针对历史地震震中在ΔF中的位置特征进行研究,以期为该地区震中预测工作提供新技术思路和资料依据。
1. 数据资料与数据处理
1.1 数据资料
观测区内共有180个地磁总强度测点,平均点间距约28km,由“晋冀蒙”及“京津冀”2个地磁总强度加密测网合并而成,观测作业执行《流动地磁测量基本技术要求》1及其规范性附录。为合理控制测区边界处模型产出结果,笔者在测区周边选取40个流动地磁矢量测点,作为模型边界约束点,并将其中4个测点用作补充测点,令研究区最终测点总数达184个(图 1)。
1 中国地震局监测预报司,中震测函[2015]39号:关于印发《流动地磁测量基本技术要求(试行)》的通知
1.2 数据处理
本文采用最新一期观测数据,通过日变通化改正、主磁场长期变改正、主磁场剥离等主要技术处理,获取研究区ΔF(陈斌等,2017),过程如下:
(1)日变通化改正
为消除流动地磁观测数据中包含的地磁场日变化等外源场成分,依托测区邻近地磁台站连续观测分钟值数据,采用单台参照法,对野外观测数据进行日变通化处理,获取监测区日变通化改正数据集。
(2)长期变改正
采用1995年1月1日以来的全国地磁台网观测数据,建立中国及周边地区地磁场长期变化3阶NOC非线性模型(顾左文等,2009),对日变通化改正数据集进行主磁场长期变改正,获取监测区长期变改正数据集。
(3)主磁场剥离
以IGRF12(2015.0年代)为研究区主磁场参考模型,并在监测区长期变改正数据结果中进行剔除,即获得各测点ΔF初始值。
(4)低通滤波
地面磁测结果必然包含杂乱的浅表岩层磁性影响成分(图 2)。为抑制和消除该数据成分,保证研究成果的合理性,笔者采用移动平均法对网格化后的ΔF初始值进行低通滤波处理,滤波器为5×5节点,对应的实际空间范围为0.5°×0.5°,滤波结果即为本研究最终采用的ΔF,本文研究模型描述了研究区2015.0年代ΔF空间分布形态(图 3)。本文ΔF等值线图中,红、蓝色实线分别代表正、负值区,黑色加粗实线为“0”值线,等值线间隔统一为25nT。
2. ΔF空间分布特征
2.1 总体特征
研究区ΔF呈正、负异常区零散相间的分布形态,负异常区面积略大于正异常区。ΔF空间结构复杂,局部异常特征表现强烈,强磁异常区形状多表现为条带状或团块状。研究区范围内共有184个测点,ΔF数值范围为-326.0—180.1nT,平均值为-40.0nT。其中负值测点128个,占69.6%,ΔF平均值为-83.1nT;正值测点56个,占30.4%,ΔF平均值为58.6nT。全部测点ΔF平均幅值(为表述方便,本文借用物理学名词“幅值”表示ΔF绝对值)为75.6nT,约占地磁场能量成分的0.14%(图 4)。
2.2 分区特征
根据ΔF形态特征,可在京南地区划出1条NE走向界线,将研究区分为以下2个分区(图 4):
(1)中西部为ΔF能量集中区,其核心区由2个NE走向的高值负异常区及其间的高值正异常区组成,近似平行四边形。磁异常强度总体较高,且随空间展布快速变化,磁场高梯级带广泛分布。
(2)中东部为弱磁异常区,表现为幅值较低的背景性负异常区,在其边缘零散分布小片正磁异常区,最东端为局部强磁异常区。
ΔF分区与地形、地层分布形态具有明显相关性,表现为三者具备相似的分区特征,且分区界线位置基本吻合:
(1)分区界线与太行山脉东缘基本重合,其东侧为平原地区,磁异常强度总体较低;西侧为山区及高原地区,磁异常强度整体较高且形态复杂。山区强磁异常区呈条带状,走向基本与山脉吻合(图 5)。该现象的形成应与平原地区深厚冲积层对ΔF短波成分的屏蔽效应及山地浅表岩层磁性的影响直接相关。
(2)以分区界线为界,东部地区以第四系地层为主,面积较大、形状规整,与ΔF弱磁异常区基本重合;西部地区地层多样、分布杂乱,均为较古老的地层,火山岩、变质岩岩体及碎屑分布较广泛,与ΔF强磁异常区对应(图 6)。该特征显示了第四系地层地表磁性与其它地层明显不同。
3. 研究区ΔF地震地质特征
3.1 ΔF与二级地块构造
研究区位于燕山、华北平原及鄂尔多斯3个二级地块交汇部位,地块间的结合带贯穿其间。各地块在ΔF中显示出不同的特征:华北平原地块磁异常强度较弱,其西北边界线与ΔF中NE走向高梯级带及“0”值线具有较好的吻合度,东北边界线穿过ΔF弱磁异常区;鄂尔多斯地块东北局部为强磁异常区,边界线局部与ΔF高梯级带有一定程度的对应;燕山地块南缘贯穿ΔF正、负异常相间分布区(图 7)。地块结合带部位为强磁异常区,形态复杂。
3.2 ΔF与断裂构造
研究区内断裂构造广泛发育,分布密集。中、西部断裂为晚更新世—全新世(距今10—12万年)以来的活动断裂,其走向以NE向为主,与该地区强磁异常条带的空间位置大体对应,走向基本一致;研究区中、东部断裂属平原区隐伏断裂,对应ΔF弱磁异常区;研究区东端局部强磁异常区与对应断裂带的走向基本一致,同为NEE向(图 8)。
3.3 历史地震在ΔF中的位置特征
研究区涵盖张渤地震带大部分及华北平原地震带北端,为华北地区重要的地震活动区,历史上共发生Ms5.0以上地震85次,其中包括Ms6.0以上地震20次、Ms7.0以上地震4次(图 9)。为全面研究历史地震震中在ΔF中的分布规律与位置特征,笔者按震级分类,对震中位置处ΔF值、ΔF特殊位置处的震中数量进行分类统计,结果见表 1。
表 1 研究区历史地震震中部位ΔF数值统计结果Table 1. Basic statistical results of ΔF value at the epicenter of historical earthquakes in the study area项目 震级 5级以上 6级以上 7级以上 地震总数/个 85 20 4 震中位置处ΔF均值/nT -70.6 -75.6 -60.2 震中位置处ΔF平均幅值/nT 82.9 91.0 60.2 位于ΔF负值区的震中个数与占比/(个,%) 70,82.4% 17,85.0% 4,100.0% ΔF低幅值(小于平均幅值)区震中个数与占比/(个,%) 51,60.0% 11,55.0% 4,100.0% ΔF高幅值(大于2倍平均幅值)区震中个数与占比/(个,%) 10,11.8% 2,10.0% 0,0.0% ΔF“0”值线附近(两侧各15km范围内)震中个数与占比/(个,%) 50,58.8% 8,40.0% 2,50.0% ΔF高梯级带处震中个数与占比/(个,%) 70,82.4% 16,80.0% 3,75.0% 根据统计结果,对历史地震震中在ΔF中的位置特征进行以下分析:
(1)震中位置处ΔF平均值明显低于研究区总体平均值(-40nT);
(2)ΔF负值区内地震个数远多于正值区,且随着震级的增大,其比例增加;
(3)低幅值区内震中个数明显多于高幅值区。ΔF超高幅值区(大于2倍平均幅值)内震中数量占比较低,且随着震级的增大,其占比进一步减小;
(4)在ΔF“0”值线附近的狭长地带中,密集发生了大量历史地震;
(5)绝大多数地震发生于ΔF高梯级带部位;
(6)强磁异常区内,地震震中表现出的位置特征明显区别于弱磁异常区。前者以ΔF负值区、“0”值线、高梯级带为主;后者主要表现为ΔF负值区、低幅值区。相对而言,前者的震中位置特殊性显著程度远大于后者。
4. 总结与讨论
通过本文研究主要得到以下结论:
(1)研究区ΔF空间结构复杂,局部异常特征表现强烈。总体具有分区特征,且与地形、地层的关系密切。
(2)磁场高梯级带走向与断裂构造体系总体一致;各二级地块ΔF特征明显不同,地块边界线局部与ΔF高梯级带吻合;地块间结合带部位为强磁异常区,形态复杂。
(3)5级以上历史地震与ΔF负值区、低幅值区、“0”值线、高梯级带等特殊位置关系密切。强磁异常区内的震中位置统计规律性明显强于弱磁异常区。该特征可为本地区未来震中位置预测工作提供新的参考依据。
在已有研究的基础上,计算研究区岩石圈磁场数值模型时,应用了较大规模的高精度、高密度地面磁测资料,因此模型计算与研究结论具备更好的数据基础。进而对该模型进行了较细致的量化研究,并从“为地震预测服务”角度出发,分层次、多角度对历史地震在ΔF中的分布规律进行统计分析,并进行有针对性的研究工作。
在数据处理过程中,笔者发现地面磁测结果中包含地表浅层岩层磁性影响成分,并对ΔF初始值进行低通滤波处理。为抑制和消除其影响,相关学者在进行类似研究工作时,也应采用适当的数据处理方法对其进行剔除处理,以保证研究结果的合理性。
受研究区域范围及笔者研究水平的限制,研究结论可能具有一定片面性,更深入、全面的研究工作有待进一步开展。
-
表 1 样品光释光测试参数及年龄
Table 1. OSL dating results of the samples
样品编号 埋深/m U/(μg·g−1) Th/(μg·g−1) K/% 含水量/% 环境剂量率/(Gy·ka−1) 等效剂量/Gy 年代/(ka BP) OSL-MY-3 0.87 2.67±0.06 14.4±0.19 2.14±0.02 2.05 4.87±0.36 35.64±1.05 7.33±0.58 OSL-MY-4 0.49 2.75±0.05 14.8±0.38 2±0.01 6.31 4.59±0.32 37.02±1.68 8.06±0.67 OSL-MY-5 0.53 2.71±0.06 14±0.36 1.9±0.01 3.59 4.54±0.33 156.74±7.78 34.56±3.02 OSL-MY-6 0.55 2.56±0.02 14.7±0.28 2.23±0.02 5.05 4.8±0.34 44.43±2.28 9.25±0.81 OSL-MY-7 0.6 3.21±0.03 17±0.19 2.32±0.02 5.13 5.33±0.38 18.29±0.57 3.43±0.27 OSL-MY-8 0.45 2.49±0.03 14.1±0.27 2.02±0.02 2.57 4.66±0.34 2.34±0.09 0.5±0.04 -
丁锐,李环宇,张世民等,2022. 基于网络/基站RTK移动摄影测量数据的垂向精度分析. 震灾防御技术,17(1):68−78. doi: 10.11899/zzfy20220107Ding R., Li H. Y., Zhang S. M., et al., 2022. Analysis of vertical accuracy based on network/base station RTK-SfM data. Technology for Earthquake Disaster Prevention, 17(1): 68−78. (in Chinese) doi: 10.11899/zzfy20220107 高伟,2018. 天桥沟−黄羊川断裂晚第四纪活动特征及其构造意义. 北京:中国地震局地质研究所.Gao W., 2018. Late quaternary activity of the tianqiaogou-huangyangchuan fault:implication for the tectonic movement mechanism at the Northeastern Tibet. Beijing:Institute of Geology,China Earthquake Administration. (in Chinese) 郭鹏,韩竹军,安艳芬等,2017. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究. 中国科学:地球科学,47(5):617−630.Guo P., Han Z. J., An Y. F, et al. , 2017. Activity of the Lenglongling fault system and seismotectonics of the 2016 M S6.4 Menyuan earthquake. Science China Earth Sciences, 60(5): 929−942. (in Chinese) 郝明,李煜航,秦姗兰,2017. 基于GPS数据的海原-六盘山断裂带滑动速率亏损时空分布. 地震地质,39(3):471−484. doi: 10.3969/j.issn.0253-4967.2017.03.003Hao M., Li Y. H., Qin S. L., 2017. Spatial and temporal distribution of slip rate deficit across Haiyuan-Liupan Shan fault zone constrained by GPS data. Seismology and Geology, 39(3): 471−484. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.03.003 黄伟亮,杨晓平,李胜强等,2018. 焉耆盆地北缘断裂全新世滑动速率及地震危险性. 地震地质,40(1):186−203. doi: 10.3969/j.issn.0253-4967.2018.01.014Huang W. L., Yang X. P., Li S. Q., et al., 2018. Holocene slip rate and earthquake hazard of the north-edge fault of the Yanqi Basin, southeastern Tian Shan, China. Seismology and Geology, 40(1): 186−203. (in Chinese) doi: 10.3969/j.issn.0253-4967.2018.01.014 蒋锋云,季灵运,赵强,2021. 海原-六盘山断裂带现今地震危险性的数值模拟分析. 地质力学学报,27(2):230−240. doi: 10.12090/j.issn.1006-6616.2021.27.02.022Jiang F. Y., Ji L. Y., Zhao Q., 2021. Numerical simulation of the present seismic risk of the Haiyuan - Liupanshan fault zone. Journal of Geomechanics, 27(2): 230−240. (in Chinese) doi: 10.12090/j.issn.1006-6616.2021.27.02.022 李延川,2016. 基于GPS的海原断裂变形特征及强震危险性分析. 青岛:中国石油大学(华东).Li Y. C., 2016. Deformation characteristics and seismic hazard evaluation of the Haiyuan fault based on GPS. Qingdao: China University of Petroleum (East China). (in Chinese) 刘金瑞,任治坤,张会平等,2018. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论. 地球物理学报,61(4):1281−1297. doi: 10.6038/cjg2018L0364Liu J. R., Ren Z. K., Zhang H. P., et al., 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications. Chinese Journal of Geophysics, 61(4): 1281−1297. (in Chinese) doi: 10.6038/cjg2018L0364 刘静,陈涛,张培震等,2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构. 科学通报,58(1):41−45. doi: 10.1360/972012-1526Liu J., Chen T., Zhang P. Z., et al., 2013. Illuminating the active Haiyuan fault, China by airborne light detection and ranging. Chinese Science Bulletin, 58(1): 41−45. (in Chinese) doi: 10.1360/972012-1526 刘雷,朱良玉,庄文泉,2022. 2022年门源 M S 6.9地震前祁连−海原断裂带闭锁程度研究. 地震地磁观测与研究,43(S1):433−436.Liu L., Zhu L. Y., Zhuang W. Q., 2022. Study on the locking degree of the Qilian-Haiyuan fault zone before the 2022 Menyuan M S 6.9 earthquake. Seismological and Geomagnetic Observation and Research, 43(S1): 433−436. (in Chinese) 牛继荣,张环,张富芳等,2005. 天祝地震危险区划研究. 防灾技术高等专科学校学报,7(3):60−64.Niu J. R., Zhang H., Zhang F. F., et al., 2005. A research on the earthquake hazardous area zoning in Tianzhu. Journal of College of Disaster Prevention Techniques, 7(3): 60−64. (in Chinese) 潘保田,苏怀,刘小丰等,2007. 兰州东盆地最近1.2Ma的黄河阶地序列与形成原因. 第四纪研究,27(2):172−180. doi: 10.3321/j.issn:1001-7410.2007.02.002Pan B. T., Su H., Liu X. F., et al., 2007. River terraces of the Yellow River and their genesis in eastern Lanzhou Basin during last 1.2 Ma. Quaternary Sciences, 27(2): 172−180. (in Chinese) doi: 10.3321/j.issn:1001-7410.2007.02.002 乔鑫,屈春燕,单新建等,2019. 基于时序InSAR的海原断裂带形变特征及运动学参数反演. 地震地质,41(6):1481−1496. doi: 10.3969/j.issn.0253-4967.2019.06.011Qiao X., Qu C. Y., Shan X. J., et al., 2019. Deformation characteristics and kinematic parameters inversion of Haiyuan fault zone based on time series InSAR. Seismology and Geology, 41(6): 1481−1496. (in Chinese) doi: 10.3969/j.issn.0253-4967.2019.06.011 任治坤,陈涛,张会平等,2014. LiDAR技术在活动构造研究中的应用. 地质学报,88(6):1196−1207.Ren Z. K., Chen T., Zhang H. P., et al., 2014. LiDAR survey in active tectonics studies: an introduction and overview. Acta Geologica Sinica, 88(6): 1196−1207. (in Chinese) 孙赫,徐晶,柳皓元,2017. 基于InSAR的广义海原断裂带中东段现今深部运动特征. 大地测量与地球动力学,37(11):1141−1145.Sun H., Xu J., Liu H. Y., 2017. Depth present-day movement in the mid-eastern segment of the Haiyuan fault zone based on InSAR. Journal of Geodesy and Geodynamics, 37(11): 1141−1145. (in Chinese) 唐清,郑文俊,石霖等,2020. 基于高精度LiDAR数据的断裂活动习性精细定量−−以香山-天景山断裂景泰小红山段为例. 地震地质,42(2):366−381. doi: 10.3969/j.issn.0253-4967.2020.02.008Tang Q., Zheng W. J., Shi L., et al., 2020. Quantitative study of fault activity based on high-precision airborne LiDAR data: a case of Xiaohongshan Fault in Xiangshan-Tianjingshan Fault Zone. Seismology and Geology, 42(2): 366−381. (in Chinese) doi: 10.3969/j.issn.0253-4967.2020.02.008 王永成,刘百篪,2001. 祁连山中东段断裂的地震危险性分析. 西北地震学报,23(4):330−338.Wang Y. C., Liu B. C., 2001. Analysis on seismic risk for faults in the mid-Eastern Qilianshan area. Northwestern Seismological Journal, 23(4): 330−338. (in Chinese) 魏占玉,何宏林,石峰等,2012. 大凉山断裂带南段滑动速率估计. 地震地质,34(2):282−293. doi: 10.3969/j.issn.0253-4967.2012.02.007Wei Z. Y., He H. L., Shi F., et al., 2012. Slip rate on the south segment of Daliangshan fault zone. Seismology and Geology, 34(2): 282−293. (in Chinese) doi: 10.3969/j.issn.0253-4967.2012.02.007 姚文倩,2019. 海原断裂老虎山段及其邻区晚第四纪活动性及几何复杂度研究. 北京:中国地震局地质研究所.Yao W. Q., 2019. Late quaternary activity and geometric complexity of the Laohu Shan section and its adjacent area. Beijing:Institute of Geology,China Earthquake Administration. (in Chinese) 俞晶星,2013. 雅布赖山前断裂晚第四纪滑动速率与古地震. 北京:中国地震局地质研究所.Yu J. X., 2013. Late quaternary slip rates and paleoearthquakes along the Yabrai Range-front fault in the southern gobi-alashan block. Beijing:Institute of Geology,China Earthquake Administration. (in Chinese) 袁道阳,刘百篪,吕太乙等,1998. 北祁连山东段活动断裂带的分段性研究. 西北地震学报,20(4):27−34.Yuan D. Y., Liu B. C., Lü T. Y., et al., 1998. Study on the segmentation in east segment of the northern Qilianshan fault zone. Northweatern Seismological Journal, 20(4): 27−34. (in Chinese) 张会平,张培震,郑德文等,2012. 祁连山构造地貌特征:青藏高原东北缘晚新生代构造变形和地貌演化过程的启示. 第四纪研究,32(5):907−920. doi: 10.3969/j.issn.1001-7410.2012.05.08Zhang H. P., Zhang P. Z., Zheng D. W., et al., 2012. Tectonic geomorphology of the Qilian Shan: Insights into the late Cenozoic landscape evolution and deformation in the north eastern Tibetan Plateau. Quaternary Sciences, 32(5): 907−920. (in Chinese) doi: 10.3969/j.issn.1001-7410.2012.05.08 张培震,李传友,毛凤英,2008. 河流阶地演化与走滑断裂滑动速率. 地震地质,30(1):44−57. doi: 10.3969/j.issn.0253-4967.2008.01.004Zhang P. Z., Li C. Y., Mao F. Y., 2008. Strath terrace formation and strike-slip faulting. Seismology and Geology, 30(1): 44−57. (in Chinese) doi: 10.3969/j.issn.0253-4967.2008.01.004 朱琳,戴勇,石富强等,2022. 祁连−海原断裂带库仑应力演化及地震危险性. 地震学报,44(2):223−236. doi: 10.11939/jass.20220012Zhu L., Dai Y., Shi F. Q., et al., 2022. Coulomb stress evolution and seismic hazards along the Qilian-Haiyuan fault zone. Acta Seismologica Sinica, 44(2): 223−236. (in Chinese) doi: 10.11939/jass.20220012 Thompson S. C., Weldon R. J., Rubin C. M., et al., 2002. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. Journal of Geophysical Research: Solid Earth, 107(B9): 2203. Zheng W. J., Zhang P. Z., Ge W. P., et al., 2013. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics, 32(2): 271−293. doi: 10.1002/tect.20022 -