• ISSN 1673-5722
  • CN 11-5429/P

基于深度神经网络的地表地震动幅值预测研究

苏闻浩 刘启方

苏闻浩,刘启方,2024. 基于深度神经网络的地表地震动幅值预测研究. 震灾防御技术,19(2):387−396. doi:10.11899/zzfy20240218. doi: 10.11899/zzfy20240218
引用本文: 苏闻浩,刘启方,2024. 基于深度神经网络的地表地震动幅值预测研究. 震灾防御技术,19(2):387−396. doi:10.11899/zzfy20240218. doi: 10.11899/zzfy20240218
Su Wenhao, Liu Qifang. Study on the Prediction of Ground Motion Amplitude Based on Deep Neural Network[J]. Technology for Earthquake Disaster Prevention, 2024, 19(2): 387-396. doi: 10.11899/zzfy20240218
Citation: Su Wenhao, Liu Qifang. Study on the Prediction of Ground Motion Amplitude Based on Deep Neural Network[J]. Technology for Earthquake Disaster Prevention, 2024, 19(2): 387-396. doi: 10.11899/zzfy20240218

基于深度神经网络的地表地震动幅值预测研究

doi: 10.11899/zzfy20240218
基金项目: 国家自然科学基金项目(51978434);中国地震局工程力学研究所基本科研业务费专项资助项目(2021EEEVL0001)
详细信息
    作者简介:

    苏闻浩,男,生于1998年。硕士研究生。主要从事地震工程研究工作。E-mail:18862633233@163.com

    通讯作者:

    刘启方,男,生于1969年。研究员,博士生导师。主要从事地震工程研究工作。E-mail:Qifang_liu@126.com

Study on the Prediction of Ground Motion Amplitude Based on Deep Neural Network

  • 摘要: 地震动预测模型是灾害分析和结构设计的重要组成部分,近年来神经网络技术愈发成熟地被应用在该预测模型的开发上,但多为使用地表以下30 m范围内土层等效剪切波速(VS30)作为场地输入参数的单层全连接神经网络模型,忽略了完整土层厚度及剪切波速信息对地震动幅值的影响。本文采用卷积神经网络及全连接神经网络混合模型,选用日本KiK-net台网记录到的3174次地震共计39192条地震动记录,构建了一种基于深度神经网络框架的地表地震动幅值预测模型。该模型的输入参数为震级、震源深度、震中距、场地各土层厚度、剪切波速信息和井下地震动幅值,输出为相应的地表地震动幅值(PGA或PGV或PGD)。对模型进行训练并计算其各项评价指标予以评估,结果表明:(1)该混合神经网络模型的决定系数超过了0.85,模型残差服从正态分布,均值残差接近于0,模型表现出无偏的特性。(2)与现有经验公式相比,混合网络模型的PGA、PGV和PGD预测精度分别提升约26.9%、16.5%和11.6%。与使用VS30作为场地参数的全连接神经网络模型相比,该框架下模型预测值与真实值的Person相关系数及各项评价指标均有所提升,模型残差的均值和标准差更小,PGA、PGV和PGD模型预测精度提升约6.3%、3.9%和3.4%,能更好地对地震动幅值进行预测。
  • 图  1  各类场地数目分布

    Figure  1.  The histogram of site classification

    图  2  PGA 记录分布

    Figure  2.  PGA record distribution

    图  3  场地信息处理

    Figure  3.  Site information processing

    图  4  神经网络模型结构

    Figure  4.  Structure of neural network model

    图  5  混合输入网络模型与传统全连接网络模型目标值与预测值散点分布

    Figure  5.  Scatter distribution of target value and predicted value of hybrid input model and traditional model

    图  6  各神经网络模型的Person相关系数

    Figure  6.  Person correlation coefficient of neural network models

    图  7  网络模型残差分布

    Figure  7.  Residual distribution of neural network model

    图  8  混合神经网络框架下PGA、PGV、PGD模型在各类场地中残差分布

    Figure  8.  Residual distribution of hybrid neural network model in each site

    表  1  数据参数范围

    Table  1.   Data parameter range

    输入参数范围
    震级MW1.9 ~ 9.0
    震源深度/km3 ~682
    震中距/km0.22~1217.50
    地表峰值加速度/Gal1~2430
    下载: 导出CSV

    表  2  NERPH场地分类标准

    Table  2.   NERPH site classification criteria

    地表以下30 m范围内土层等效剪切波速
    VS30 /(m·s−1
    场地类别
    VS30 >1500 A
    760<VS301500 B
    360<VS30≤760 C
    180<VS30≤360 D
    VS30≤180 E
    下载: 导出CSV

    表  3  各神经网络模型散点拟合斜率

    Table  3.   Scatter fitting weight of neural network models

    网络模型PGAPGVPGD
    训练集测试集训练集测试集训练集测试集
    DNN0.8000.8020.8700.8660.8410.836
    CNN+DNN0.8990.9030.9220.9220.8760.870
    下载: 导出CSV

    表  4  不同模型评价指标

    Table  4.   Evaluation indexes of different models

    参数模型MSEMAER2误差/%
    PGACNN+DNN1.62×10−33.12×10−20.90115.3%
    DNN3.26×10−34.48×10−20.80521.6%
    经验公式4.82×10−35.91×10−20.49042.2%
    PGVCNN+DNN1.50×10−33.00×10−20.91843.6%
    DNN2.41×10−33.89×10−20.86847.5%
    经验公式4.93×10−36.01×10−20.42160.1%
    PGDCNN+DNN3.40×10−34.50×10−20.85361.3%
    DNN3.70×10−34.70×10−20.83664.7%
    经验公式5.22×10−36.31×10−20.39672.9%
    下载: 导出CSV

    表  5  各网络模型残差的均值、方差、标准差统计

    Table  5.   Statistics of mean, variance and standard deviation of residuals of neural network models

    网络模型PGAPGVPGD
    均值方差标准差均值方差标准差均值方差标准差
    DNN−0.0220.2370.486−0.0210.2310.480−0.0170.5690.754
    CNN+DNN0.0190.1190.344−0.0180.1390.3730.0150.5180.720
    下载: 导出CSV

    表  6  混合网络模型在各场地中残差的均值、方差、标准差统计

    Table  6.   Statistics of mean, variance and standard deviation of residuals of mixed network models


    场地类型
    网络模型
    PGAPGVPGD
    均值方差标准差均值方差标准差均值方差标准差
    B0.0230.1230.3510.0050.1380.3720.0090.4890.699
    C0.0270.1230.350−0.0080.1510.3890.0390.5380.734
    D0.0140.0980.313−0.0190.1210349−0.0020.4860.697
    E0.3230.1810.425−0.0500.1550.3940.1100.6620.814
    下载: 导出CSV
  • 薄景山,李秀领,刘红帅,2003. 土层结构对地表加速度峰值的影响. 地震工程与工程振动,23(3):35−40. doi: 10.3969/j.issn.1000-1301.2003.03.006

    Bo J. S., Li X. L., Liu H. S., 2003. Effects of soil layer construction on peak accelerations of ground motions. Earthquake Engineering and Engineering Vibration, 23(3): 35−40. (in Chinese) doi: 10.3969/j.issn.1000-1301.2003.03.006
    董凯月,2020. 基于深度神经网络的地下地震动参数预测研究. 哈尔滨:哈尔滨工业大学.

    Dong K. Y. ,2020. Study on the Prediction of underground motion parameters based on depth neural network. Harbin:Harbin University of Technology. (in Chinese)
    胡安冬,张海明,2020. 机器学习在地震紧急预警系统震级预估中的应用. 地球物理学报,63(7):2617−2626. doi: 10.6038/cjg2020N0070

    Hu A. D., Zhang H. M., 2020. Application of machine learning to magnitude estimation in earthquake emergency prediction system. Chinese Journal of Geophysics, 63(7): 2617−2626. (in Chinese) doi: 10.6038/cjg2020N0070
    胡进军,谢礼立,2005. 地震动幅值沿深度变化研究. 地震学报,27(1):68−78. doi: 10.3321/j.issn:0253-3782.2005.01.008

    Hu J. J., Xie L. L., 2005. Variation of earthquake ground motion with depth. Acta Seismologica Sinica, 27(1): 68−78. (in Chinese) doi: 10.3321/j.issn:0253-3782.2005.01.008
    吕悦军,彭艳菊,兰景岩等,2008. 场地条件对地震动参数影响的关键问题. 震灾防御技术,3(2):126−135. doi: 10.3969/j.issn.1673-5722.2008.02.003

    Lv Y. J., Peng Y. J., Lan J. Y., et al., 2008. Some key problems about site effects on seismic ground motion parameters. Technology for Earthquake Disaster Prevention, 3(2): 126−135. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.02.003
    万永革,李鸿吉,1995. 人工神经网络在地球物理中的应用综述. 国际地震动态,16(1):9−14.

    Wan Y. G., Li H. J., 1995. An overview of the application of artificial neural network in geophysics. Recent Developments in World Seismology, 16(1): 9−14. (in Chinese)
    徐龙军,谢礼立,胡进军,2006. 地下地震动工程特性分析. 岩土工程学报,28(9):1106−1111. doi: 10.3321/j.issn:1000-4548.2006.09.011

    Xu L. J., Xie L. L., Hu J. J., 2006. Analysis on engineering characteristics of sub-ground motions. Chinese Journal of Geotechnical Engineering, 28(9): 1106−1111. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.011
    薛俊伟,刘伟庆,王曙光等,2013. 基于场地效应的地震动特性研究. 地震工程与工程振动,33(1):16−23.

    Xue J. W., Liu W. Q., Wang S. G., et al., 2013. Research on ground motion characteristics considering site conditions. Earthquake Engineering and Engineering Vibration, 33(1): 16−23. (in Chinese)
    于子叶,储日升,盛敏汉,2018. 深度神经网络拾取地震P和S波到时. 地球物理学报,61(12):4873−4886. doi: 10.6038/cjg2018L0725

    Yu Z. Y., Chu R. S., Sheng M. H., 2018. Pick onset time of P and S phase by deep neural network. Chinese Journal of Geophysics, 61(12): 4873−4886. (in Chinese) doi: 10.6038/cjg2018L0725
    Ahmad I., El Naggar M. H., Khan A. N., 2008. Neural network based attenuation of strong motion peaks in Europe. Journal of Earthquake Engineering, 12(5): 663−680. doi: 10.1080/13632460701758570
    Atkinson G. M., 2001. An alternative to stochastic ground-motion relations for use in seismic hazard analysis in eastern North America. Seismological Research Letters, 72(2): 299−306. doi: 10.1785/gssrl.72.2.299
    Borcherdt R. D. , 2012. VS30-A site-characterization parameter for use in building Codes, simplified earthquake resistant design, GMPEs, and ShakeMaps. In: The 15th World Conference on Earthquake Engineering. Lisbon: USGS.
    Chicco D., Warrens M. J., Jurman G., 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7: e623. doi: 10.7717/peerj-cs.623
    Derras B., Bard P. Y., Cotton F., 2014. Towards fully data driven ground-motion prediction models for Europe. Bulletin of Earthquake Engineering, 12(1): 495−516. doi: 10.1007/s10518-013-9481-0
    Dhanya J., Raghukanth S. T. G., 2018. Ground motion prediction model using artificial neural network. Pure and Applied Geophysics, 175(3): 1035−1064. doi: 10.1007/s00024-017-1751-3
    Dokht R. M. H., Kao H., Visser R., et al., 2019. Seismic event and phase detection using time-frequency representation and convolutional neural networks. Seismological Research Letters, 90(2A): 481−490. doi: 10.1785/0220180308
    Kerh T., Chu D., 2002. Neural networks approach and microtremor measurements in estimating peak ground acceleration due to strong motion. Advances in Engineering Software, 33(11-12): 733−742. doi: 10.1016/S0965-9978(02)00081-9
    Khosravikia F. , Zeinali Y. , Nagy Z. , et al. , 2018. Neural network-based equations for predicting PGA and PGV in Texas, Oklahoma, and Kansas. In: Brandenberg S. J. , Manzari M. T. , eds. , Geotechnical Earthquake Engineering and Soil Dynamics V: Seismic Hazard Analysis, Earthquake Ground Motions, and Regional-Scale Assessment. Austin: American Society of Civil Engineers, 538−549.
    Quinino R. C., Reis E. A., Bessegato L. F., 2013. Using the coefficient of determination R2 to test the significance of multiple linear regression. Teaching Statistics, 35(2): 84−88. doi: 10.1111/j.1467-9639.2012.00525.x
    Schober P., Boer C., Schwarte L. A., 2018. Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, 126(5): 1763−1768.
    Shahriari B., Swersky K., Wang Z. Y., et al., 2016. Taking the human out of the loop: a review of Bayesian optimization. Proceedings of the IEEE, 104(1): 148−175. doi: 10.1109/JPROC.2015.2494218
    Thomas S., Pillai G. N., Pal K., et al., 2016. Prediction of ground motion parameters using randomized ANFIS (RANFIS). Applied Soft Computing, 40: 624−634. doi: 10.1016/j.asoc.2015.12.013
    Wang Y. W., Li X. J., Wang Z. F., et al., 2021. Deep learning for P-wave arrival picking in earthquake early warning. Earthquake Engineering and Engineering Vibration, 20(2): 391−402. doi: 10.1007/s11803-021-2027-6
    Zhu W. Q., Beroza G. C., 2019. PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1): 261−273.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  30
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回