Effect of Ground Motion Duration and Different Duration Indexes on the Seismic Response of Structures
-
摘要: 选取70条具有不同持时的天然地震波,并采用5%~75%重要持时将谱匹配后的地震记录划分为长、短持时地震记录集,对10层RC框架结构进行IDA分析和弹塑性时程分析,研究地震动持时对结构地震响应的影响,进一步选取35条天然地震波,采用有效持续时间、5%~75%和5%~95%重要持时等不同强震持时指标分别截取相应的加速度时程段,构建不同的地震记录集,分析不同持时指标对RC框架结构峰值响应和滞回耗能的影响。研究结果表明:在相同的地震动强度下,长持时地震动会导致更大的结构层间变形和结构倒塌概率,且随着持时的增加,结构总滞回耗能大幅增加;在罕遇地震水准下,可选取有效持续时间和5%~95%重要持时指标用于结构层间变形和楼层峰值位移分析,而在极罕遇地震水准下,选用有效持续时间具有更高的可靠性;对于楼层峰值速度,不同地震集计算结果均值和变异系数未表现出明显差异;在相同地震动强度下,建议优先选用有效持续时间用于结构滞回耗能分析。Abstract: In this paper, 70 natural seismic waves with different durations are selected, and the seismic records after spectral matching are divided into long and short-duration seismic record sets with 5%~75% significant duration, IDA analysis and elasto-plastic time-history analysis are carried out for the 10-story RC frame structure to study the effects of seismic duration on the seismic response of the structure. Further, selected 35 natural seismic waves, different seismic record sets were constructed by intercepting the corresponding acceleration time segments with different strong motion duration indexes such as bracketed duration, 5%~75% and 5%~95% significant duration. The effects of different duration indexes on peak response and hysteretic energy dissipation of RC frame structures were analyzed. The results show that under the same ground motion intensity, the long duration ground motion will lead to greater inter story deformation and collapse probability of the structure, and the total hysteretic energy dissipation of the structure will increase significantly with the increase of the duration; Under the rare earthquake level, the bracketed duration and 5%~95% significant duration indexes can be selected for the analysis of structural inter story deformation and the peak displacement of the floors, while under the extremely rare earthquake level, the bracketed duration has higher reliability. For the peak velocity of the floor, the mean and variation coefficient of the calculation results of different earthquake sets did not show significant difference; In addition, under the same ground motion intensity, it is recommended to choose the bracketed duration for structural hysteretic energy dissipation analysis.
-
引言
随着国家地震烈度速报与预警项目工程的实施,将在全国建设大量烈度计观测台站,弥补现有地震台网能力的不足,有效提高减灾和社会服务能力。其中,天津地区已在京津冀简易烈度计预警示范工程中先行建设了80个简易烈度计台站,与天津行政区内具备实时传输能力的测震台站和强震动台站共同组建天津地震预警观测系统(许可等,2019)。现有观测系统中缺少台站设备状态监控,台站各种设备基本处于未知状态,台网中心设备维护人员对台站设备状态的判断仅限于烈度计信号通断与否,台站出现故障后(如市电故障、电压不稳、网络故障、设备死机等),运维人员无法远程判断故障原因并进行有效处理,须到现场进行排查及维修,增加了运维成本,且效率较低。针对上述问题,设计烈度计台站远程监控系统,使台网和台站值班人员可在线实时查看仪器运行状态,及时发现各类设备故障,并对故障进行远程处理,提高台网管理与维护能力。
1. 监控系统的构成
烈度计台站远程监控系统物理架构如图 1所示,分为硬件设备和软件平台。硬件设备主要包括信息采集设备、服务器、PC和手机,其中,信息采集设备部署在烈度计台站,是整个监控系统的数据支撑,也是逻辑架构中的数据采集层。软件平台部署在监控中心,涉及业务层的使能平台和大数据页面、数据仓库层中的数据库、服务器中的MQTT中间件、手机APP等。
信息采集设备采集台站供电、网络、仪器状态等信息,将采集到的原始数据上传至使能平台进行存储,将原始数据传至解析器,解析器对电源数据、专业仪器数据、网络数据等进行类型分析,同时判断数据是否正常,并进行数据分类存储与统计分析,大数据界面通过GIS地图显示台站状态,对异常数据台站进行报警。运维人员查看报警台站实时数据信息,通过使能平台或手机APP向信息采集设备发送控制指令,对观测仪器等设备进行远程维护。
2. 信息采集设备
2.1 设备功能
烈度计台站信息采集设备通过对台站设备运行状态、供电状态、网络状态等进行全方位监测,及时发现并处理存在的问题,最大程度地减小设备离线率和故障率,确保台站设备安全可靠地运行。根据实际需求,本系统具有以下功能:
(1)基于NB-iot通信具有功耗低和费用低的特点,信息采集设备上行数据接口采用单独的NB-iot通信链路,信息采集设备采集台站监控信息,并通过NB-iot网络回传至台网监控中心的监控平台。
(2)信息采集设备可通过以太网口对台站现有连接网络设备(路由器和烈度计)进行网络通讯,发现问题及时报警。设备可通过以太网读取烈度计状态信息及实时数据信息,进而对专业设备状态进行监控(王建国等,2010)。
(3)信息采集设备支持接入、接出市电,并对市电电压、电流、功率、功率因数、频率、用电量等参数进行监测。同时信息采集设备不影响其他设备供电,即使信息采集设备出现故障,也不会影响其他设备的正常供电。
(4)设备具有多路I/O输入及1路RS485输入接口,支持其他设备接口接入,对设备运行状态进行监测,从而判断设备是否正常运行。
(5)信息采集设备设有1路继电器输出,将需控制设备的供电线路接入继电器常闭端,即可通过终端发送特定指令完成相应设备的关闭、打开和重启(陈吉锋等,2012)。
(6)信息采集设备内置电容,能保证台站在断电情况下短时间工作,将故障信息回传。
2.2 功能实现
设备核心功能模块主要包括核心嵌入式控制器(MCU)模块、NB通信模组模块、能耗测量模块、网络通讯模块。信息采集设备功能模块逻辑图如图 2所示,其中,主控模块是设备的核心,通过C语言和汇编语言实现设备核心算法与逻辑控制,完成对外围硬件的控制功能;电源模块为控制电路提供电源;数据采集模块实现不同通讯协议设备的接入,包括电能计量模块、I/O接口输入、RS485通讯接口等;以太网模块实现与本地路由器之间的通讯,通过TCP传输协议查询台站设备间的网络连通情况,包括烈度计、路由器等网络联通信息(宁晓青等,2019);控制模块通过接收主控模块的指令实现设备断电、重启等操作;NB模块为通信模块,可使用3家运营商的NB服务,实现监控信息及控制指令的传输。
2.3 设备配置
上位机设备配置软件通过RS485接口与设备进行通信,实现NB-iot网络、以太网、测量量、烈度计等参数的配置,上位机配置软件界面如图 3所示。NB-iot网络参数配置实现设备与监控中心接收数据服务器的通信,需配置的主要参数包括MQTT服务器地址和端口、登陆ID及订阅主题;以太网参数配置实现设备与烈度计和路由器间的通信,需配置的主要参数包括设备网卡IP地址、网关地址和掩码地址;测量量参数配置实现台站网络与供电的监控测量,需配置的主要参数包括台站设备IP地址、环境参数(如电压、功率、温度等);地震烈度计监测参数配置实现烈度计状态信息的监控测量,需配置的参数主要包括烈度计类型和IP地址。
3. 监控平台
监控平台是基于物联网侧设备接入使能的云化平台系统,能有效监控烈度计台站设备数据的采集、存储、分析、数据展现及发布、智能管控等,平台具备丰富的对外数据接口,可简单灵活地通过插件编程实现不停机对接收数据保存、解析、加解密、格式转换等。
3.1 逻辑架构
监控平台逻辑架构从功能层上分为数据仓库层、功能层和业务层(图 4)。
数据仓库层实现对数据存储表的管理,包括信息采集设备上传的原始数据表、解析数据表、用户管理表、业务报表、系统监控表、参数设备表。功能层包括监控平台实现的功能,如身份认证、数据解析、数据查询和报表分析等。业务层包括使能平台和大数据页面,使能平台主要完成数据查询统计和下行,大数据页面完成数据统计分析及展示。
3.2 功能模块
监控平台从使用上分为用户模块、设备模块、应用模块和解析器模块,其中,用户模块为基础,设备模块为纽带,应用模块为主干,解析器模块为重点,各模块功能见表 1。
表 1 监控平台各模块功能Table 1. Functions of monitoring platform modules模块 功能 用户模块 存储用户的基本信息,按登录用户信息显示不同的平台信息 设备模块 对上行数据进行分类,将数据与设备对应,对设备基本信息进行查询与维护 应用模块 作为设备与解析器的依托,控制设备离线监测、数据解析、设备报警等功能是否开启 解析器模块 将所有上行数据解析后展现在监控平台的大数据界面上 4. 系统应用
烈度计台站信息采集设备已在80个简易烈度计台站安装部署,监控平台在台网中心服务器进行部署,监控平台基于B/S架构进行设计,方便用户操作。值班人员通过监控平台大数据界面(图 5)查看台站运行状态,发现报警及时远程维护。监控系统在实际运行过程中多次监测到台站供电中断、网络故障和烈度计数据异常。当监测到台站供电中断时,运维人员第一时间给烈度计台站看护人员打电话确认供电故障的具体原因,确保供电故障及时修复;当监测到台站网络中断时,通过远程控制路由器重启解决由于路由器死机导致的网络故障;当监测到烈度计数据异常时,通过远程控制烈度计重启解决由于烈度计死机导致的数据异常问题。
监控平台还具有大数据统计分析功能,如可对台站报警类型及报警次数日排名、台站通信流量排名、台站电压日统计报表、报警次数月统计报表、台站报警类型占比、台站报警状态占比进行展示。运维人员可根据相关统计报表有针对性地对台站各类设备进行定向优化升级,保证观测数据的稳定可靠。
5. 结语
烈度计台站远程监控系统可实时监控烈度计台站各设备运行状态,设备如果出现故障可判断具体故障原因,并及时进行远程维护,减少运维成本,有效提高运维人员工作效率和监测数据的连续率,具有应用与推广价值。
-
表 1 框架梁截面尺寸及配筋
Table 1. Section and reinforcement information of frame beams
楼层 尺寸(高×宽)/mm 纵筋 边跨 中跨 边跨 中跨 1~3 600×300 600×300 3C25+1C22,2C22+1C20 3C25+1C22,3C20+1C22 4~6 600×300 600×300 3C25+1C20,3C20 3C25+1C20,2C22+1C20 7~8 600×300 600×300 3C25,3C20 3C25,3C20 9~10 600×300 600×300 3C20,3C20 3C20,3C20 表 2 框架柱截面尺寸及配筋
Table 2. Section and reinforcement information of frame columns
楼层 尺寸(高×宽)/mm 纵筋 边柱 中柱 边柱 中柱 1~2 650×650 650×650 17C20 17C20 3~4 600×600 600×600 17C20 17C20 5~6 550×550 550×550 12C22 12C22 7~8 500×500 500×500 12C20 12C22 9~10 450×450 450×450 12C20 12C20 表 3 结构自振周期对比
Table 3. Comparison of structural natural vibration periods
振型号 振型方向 OpenSees(T1)/s ETABS(T2)/s T1/T2 1 X 1.276 1.286 99.2% 2 Y 1.251 1.280 97.7% 3 T 1.145 1.158 98.9% 表 4 地震动信息
Table 4. Information about the seismic records
编号 地震事件-年份 震级 台站 分量 1 Kocaeli, Turkey-1999 7.51 Duzce KOCAELI_DZC180 2 Duzce, Turkey-1999 7.14 Duzce DUZCE_DZC180 3 Kocaeli, Turkey-1999 7.51 Goynuk KOCAELI_GYN090 4 Kocaeli, Turkey-1999 7.51 Yarimca KOCAELI_YPT060 5 Darfield, New Zealand-2010 7 HORC DARFIELD_HORCN18 E 6 Kocaeli, Turkey-1999 7.51 Arcelik KOCAELI_ARE000 7 Chi-Chi, Taiwan-1999 7.62 CHY028 CHICHI_CHY028-N 8 Kocaeli, Turkey-1999 7.51 Mecidiyekoy KOCAELI_MCD000 9 El Mayor-Cucapah-2010 7.2 El Centro Differential Array SIERRA.MEX_EDA090 10 Kocaeli, Turkey-1999 7.51 Iznik KOCAELI_IZN090 11 Hector Mine-1999 7.13 Amboy HECTOR_ABY090 12 Darfield, New Zealand-2010 7 Canterbury Aero Club DARFIELD_CACSN50 W 13 Taiwan SMART1(45)-1986 7.3 SMART1 O02 SMART1.45_45 O02 EW 14 Chi-Chi, Taiwan-1999 7.62 CHY101 CHICHI_CHY101-E 15 Denali, Alaska-2002 7.9 Carlo (temp) DENALI_CARLO-90 16 Taiwan SMART1(45)-1986 7.3 SMART1 I01 SMART1.45_45 I01 EW 17 Chi-Chi, Taiwan-1999 7.62 TCU034 CHICHI_TCU034-E 18 Taiwan SMART1(45)-1986 7.3 SMART1 M07 SMART1.45_45 M07 EW 19 Taiwan SMART1(45)-1986 7.3 SMART1 I11 SMART1.45_45 I11 EW 20 Landers-1992 7.28 Yermo Fire Station LANDERS_YER360 21 Taiwan SMART1(45)-1986 7.3 SMART1 O01 SMART1.45_45 O01 EW 22 Chi-Chi, Taiwan-1999 7.62 TCU074 CHICHI_TCU074-E 23 Taiwan SMART1(45)-1986 7.3 SMART1 C00 SMART1.45_45 C00 EW 24 Darfield, New Zealand-2010 7 SPFS DARFIELD_SPFSN73 W 25 Chi-Chi, Taiwan-1999 7.62 TCU122 CHICHI_TCU122-N 26 Chi-Chi, Taiwan-1999 7.62 TCU082 CHICHI_TCU082-E 27 Denali, Alaska-2002 7.9 TAPS Pump Station #10 DENALI_PS10-047 28 Taiwan SMART1(45)-1986 7.3 SMART1 I07 SMART1.45_45 I07 EW 29 Landers-1992 7.28 Amboy LANDERS_ABY000 30 Chi-Chi, Taiwan-1999 7.62 TCU050 CHICHI_TCU050-E 31 Chi-Chi, Taiwan-1999 7.62 TCU079 CHICHI_TCU079-E 32 Chi-Chi, Taiwan-1999 7.62 CHY088 CHICHI_CHY088-N 33 Landers-1992 7.28 Fun Valley LANDERS_FVR045 34 Chi-Chi, Taiwan-1999 7.62 TCU120 CHICHI_TCU120-E 35 Landers-1992 7.28 Joshua Tree LANDERS_JOS000 36 Chi-Chi, Taiwan-1999 7.62 ILA041 CHICHI_ILA041-N 37 Landers-1992 7.28 Indio - Coachella Canal LANDERS_IND000 38 Chi-Chi, Taiwan-1999 7.62 CHY082 CHICHI_CHY082-N 39 Chi-Chi, Taiwan-1999 7.62 TCU117 CHICHI_TCU117-N 40 Chi-Chi, Taiwan-1999 7.62 ILA048 CHICHI_ILA048-N 41 El Mayor-Cucapah-2010 7.2 Huntington Beach - Lake St SIERRA.MEX_HNT090 42 Chi-Chi, Taiwan-1999 7.62 TCU119 CHICHI_TCU119-N 43 Chi-Chi, Taiwan-1999 7.62 CHY027 CHICHI_CHY027-E 44 Chi-Chi, Taiwan-1999 7.62 CHY027 CHICHI_CHY027-N 45 El Mayor-Cucapah-2010 7.2 Anaheim - Kraemer & La Palma SIERRA.MEX_AKL090 46 Chi-Chi, Taiwan-1999 7.62 TCU119 CHICHI_TCU119-E 47 Chi-Chi, Taiwan-1999 7.62 TCU113 CHICHI_TCU113-E 48 Chi-Chi, Taiwan-1999 7.62 CHY090 CHICHI_CHY090-N 49 Chi-Chi, Taiwan-1999 7.62 CHY057 CHICHI_CHY057-N 50 Chi-Chi, Taiwan-1999 7.62 CHY044 CHICHI_CHY044-N 51 Chi-Chi, Taiwan-1999 7.62 CHY033 CHICHI_CHY033-N 52 El Mayor-Cucapah-2010 7.2 Anaheim - Lakeview & Riverdale SIERRA.MEX_ALR090 53 Chi-Chi, Taiwan-1999 7.62 CHY107 CHICHI_CHY107-N 54 Chi-Chi, Taiwan-1999 7.62 CHY033 CHICHI_CHY033-E 55 Chi-Chi, Taiwan-1999 7.62 CHY054 CHICHI_CHY054-E 56 El Mayor-Cucapah-2010 7.2 EJIDO SALTILLO SIERRA.MEX_SAL000 57 El Mayor-Cucapah-2010 7.2 EJIDO SALTILLO SIERRA.MEX_SAL090 58 Chi-Chi, Taiwan-1999 7.62 CHY070 CHICHI_CHY070-N 59 El Mayor-Cucapah-2010 7.2 Santa Ana - Grand & Santa Clara SIERRA.MEX_ 13069 -9060 Chi-Chi, Taiwan-1999 7.62 CHY059 CHICHI_CHY059-N 61 Chi-Chi, Taiwan-1999 7.62 CHY002 CHICHI_CHY002-W 62 Denali, Alaska-2002 7.9 Valdez - Valdez Dock Company DENALI_VALDC090 63 Chi-Chi, Taiwan-1999 7.62 CHY004 CHICHI_CHY004-N 64 Chi-Chi, Taiwan-1999 7.62 CHY016 CHICHI_CHY016-N 65 Denali, Alaska-2002 7.9 Valdez - Valdez Dock Company DENALI_VALCC090 66 El Mayor-Cucapah-2010 7.2 Garden Grove - Hwy 22 & Harbor SIERRA.MEX_GGH360 67 El Mayor-Cucapah-2010 7.2 Garden Grove - Brookhurst & Westminster SIERRA.MEX_ 13885 -9068 El Mayor-Cucapah-2010 7.2 Garden Grove - Brookhurst & Westminster SIERRA.MEX_ 13885360 69 Denali, Alaska-2002 7.9 Valdez - Valdez Dock Company DENALI_VALDC360 70 Chi-Chi, Taiwan-1999 7.62 CHY017 CHICHI_CHY017-N 表 5 RC框架结构不同性能点对应的最大层间位移角限值
Table 5. The limit of maximum inter-story displacement angle corresponding to different performance points of RC frame structure
正常使用(OP) 立即使用(IO) 生命安全(LS) 防止倒塌(CP) 损伤描述 层间位移角 损伤描述 层间位移角 损伤描述 层间位移角 损伤描述 层间位移角 结构完好 1/550 轻微破坏 1/250 中等破坏 1/120 严重破坏 1/50 表 6 各设防水准条件下结构处于不同破坏状态的概率
Table 6. Failure probability of structures in different failure states under each fortification level
设防水准 地震动持时类别 破坏状态对应概率/% 基本完好 轻微破坏 中等破坏 严重破坏 发生倒塌 设防地震 长持时 100 0 0 0 0 短持时 100 0 0 0 0 罕遇地震 长持时 1 27 62 10 0 短持时 1 34 58 7 0 极罕遇地震 长持时 0 0 10 71 19 短持时 0 0 20 71 9 表 7 所选地震记录信息及地震动持时计算结果
Table 7. Information and earthquake duration of Selected Seismic Record
编号 地震事件-年份 震级 台站 分量 PGA/g Rjb/km 场地类别 地震动持时/s 总时长 Db Da5-95 Da5-75 1 Denali Alaska-2002 7.9 TAPS_Pump_Station_#11 PS11066 0.071915 126.4 II 164.785 124.99 76.55 48.72 2 Loma Prieta-1989 6.9 Bear_Valley_#1-Fire_Station BVF220 0.072158 61.1 II 29.55 27.56 16.02 9.51 3 Chi Chi Taiwan 04-1999 6.2 TCU042 TCU042-N 0.024775 98.4 II 61.995 48.03 27.68 11.77 4 Borrego Mtn-1968 6.6 San_Onofre-So_Cal_Edison A-SON033 0.041315 129.1 II 39.995 37.66 28.45 20.31 5 Chi Chi Taiwan-05-1999 6.2 TCU068 TCU068-E 0.043411 49.9 II 59.99 37.50 20.74 8.21 6 Chi Chi-Taiwan-06-1999 6.3 TCU075 TCU075-N 0.108042 24.3 II 60.98 38.47 24.75 10.96 7 Coalinga-01-1983 6.4 Parkfield-Vineyard_Cany_6 W H-VC6090 0.075836 39.9 II 39.99 34.67 20.48 9.71 8 Northridge-01-1994 6.7 LA-Century_City_CC_North CCN090 0.255667 15.5 II 39.98 24.84 13.16 7.02 9 Chi Chi Taiwan-04-1999 6.2 CHY057 CHY057-N 0.02421 61.9 II 49.995 42.57 22.14 11.42 10 Chi Chi Taiwan-02-1999 5.9 TAP052 TAP052-N 0.013018 121.7 II 46.995 41.37 23.33 14.18 11 Whittier Narrows-01-1987 6 Fountain_Valley-Euclid A-EUC292 0.056122 36.7 II 29.18 25.88 17.54 9.36 12 Loma Prieta-1989 6.9 Coyote_Lake_Dam_(Downst) CLD195 0.160425 20.4 II 39.945 24.12 13.38 4.66 13 Chalfant Valley-01-1986 5.8 Bishop-LADWP_South_St B-LAD270 0.098332 23.4 II 39.915 31.66 21.69 12.21 14 Landers-1992 7.3 LA-N_Westmoreland WST000 0.037335 159.1 II 39.66 35.40 22.46 14.90 15 Coalinga-03-1983 5.4 Coalinga-14 th&Elm(Old_CHP) B-CHP090 0.058725 11.9 II 39.99 20.06 16.22 8.21 16 Chalfant Valley-02-1986 6.2 Bishop-LADWP_South_St A-LAD180 0.24861 14.4 II 39.975 20.39 12.57 3.60 17 Imperial Valley-06-1979 6.5 Agrarias H-AGR003 0.287257 0 II 28.35 23.92 13.12 6.23 18 Northridge-01-1994 6.7 N_Hollywood-Coldwater_Can CWC270 0.253543 7.9 II 21.91 20.26 16.39 6.99 19 Manjil, Iran-1990 7.4 Qazvin 185336 0.130738 50 II 60.41 49.08 25.70 11.05 20 Mammoth Lakes-03-1980 5.9 Convict_Creek A-CVK090 0.233491 1.0 II 39.995 14.24 6.31 2.76 21 Northridge-01-1994 6.7 Inglewood-Union_Oil ING000 0.090724 37.2 II 35.98 30.78 21.66 11.78 22 Big Bear-01-1992 6.5 Hesperia-4 th_&_Palm H4 P090 0.057397 44.3 II 60 48.22 26.95 10.71 23 San Fernando-1971 6.6 Maricopa_Array_#3 MA3220 0.010369 109 II 26.235 25.37 21.67 14.43 24 Kocaeli Turkey-1999 7.5 Arcelik ARC090 0.134198 10.6 II 29.995 19.99 10.27 5.11 25 Northridge-01-1994 6.7 Newport_Bch-Irvine_Ave._F.S NBI090 0.060722 83 II 39.98 31.80 21.26 12.54 26 Kocaeli Turkey-1999 7.5 Istanbul IST090 0.042683 49.7 II 138.78 61.82 37.30 18.01 27 Manjil, Iran-1990 7.4 Tehran-SarifUniversity 186008 0.011335 171.8 II 17.55 17.18 14.46 8.74 28 Hector Mine-1999 7.1 Mill_Creek_Ranger_Station MCR270 0.047473 84.9 II 54.995 42.07 21.21 15.12 29 Landers-1992 7.3 Mission_Creek_Fault MCF090 0.131554 27 II 69.995 54.09 40.23 30.48 30 San Fernando-1971 6.6 Buena_Vista-Taft BVP180 0.011976 111.4 II 26.63 25.83 21.55 13.61 31 North Palm Springs-1986 6.1 Desert_Hot_Springs DSP000 0.321239 1 II 23.995 16.13 6.55 2.90 32 San Fernando-1971 6.6 2516 _Via_Tejon_PVPVE155 0.041521 55.2 II 70.17 62.70 52.37 26.19 33 Loma Prieta-1989 6.9 Saratoga-Aloha_Ave STG090 0.326228 7.6 II 39.95 15.63 8.29 4.18 34 Borrego Mtn-1968 6.6 San_Onofre-So_Cal_Edison A-SON303 0.047202 129.1 II 39.995 36.59 28.22 20.11 35 Northridge-01-1994 6.7 Santa_Monica_City_Hall STM360 0.369888 17.3 II 39.98 16.00 10.70 6.86 -
杜轲,孙景江,许卫晓,2012. 纤维模型中单元、截面及纤维划分问题研究. 地震工程与工程振动,32(5):39−46.Du K., Sun J. J., Xu W. X., 2012. The division of element, section and fiber in fiber model. Journal of Earthquake Engineering and Engineering Vibration, 32(5): 39−46. (in Chinese) 韩建平,杨军平,2012. 考虑结构构件退化特性评估大震下RC框架抗整体性倒塌能力. 地震工程与工程振动,32(6):53−64.Han J. P., Yang J. P., 2012. Investigation on global collapse resistant capacity of RC frame under severe earthquake considering deterioration characteristic of structural components. Earthquake Journal of Engineering and Engineering Vibration, 32(6): 53−64. (in Chinese) 何海健,徐孟豪,苏亮等,2018. 结构弹塑性时程分析中输入地震动的选取数量研究. 地震工程与工程振动,38(2):150−156.He H. J., Xu M. H., Su L., et al., 2018. Study on numbers of earthquake ground motions for nonlinear time-history analysis of structures. Earthquake Engineering and Engineering Dynamics, 38(2): 150−156. (in Chinese) 任浩,田勤虎,张炜超等,2019. 基于IDA方法的钢筋混凝土框架结构地震易损性分析. 建筑结构,49(S2):350−355.Ren H., Tian Q. H., Zhang W. C., et al., 2019. Seismic fragility analysis of reinforced concrete frame structures based on IDA method. Building Structure, 49(S2): 350−355. (in Chinese) 施炜,叶列平,陆新征等,2011. 不同抗震设防RC框架结构抗倒塌能力的研究. 工程力学,28(3):41−48,68.Shi W., Ye L. P., Lu X. Z., et al., 2011. Study on the collapse-resistant capacity of RC frames with different seismic fortification levels. Engineering Mechanics, 28(3): 41−48,68. (in Chinese) 孙小云,2017. 地震动持时特性及其对RC框架结构非线性地震响应影响研究. 兰州:兰州理工大学.Sun X. Y. ,2017. Investigation on duration characteristics of ground motion and its effect on nonlinear seismic response of RC frame structures. Lanzhou:Lanzhou University of Technology. (in Chinese) 王德才,2010. 基于能量分析的地震动输入选择及能量谱研究. 合肥:合肥工业大学.Wang D. C. ,2010. Research on energy spectrum and the selection of earthquake accelerograms for dynamic analysis based on energy. Hefei:Hefei University of Technology. (in Chinese) 杨成,2010. 结构动力分析在基于性能的抗震工程中的应用. 成都:西南交通大学.Yang C. ,2010. Structural dynamics analysis in performance-based earthquake engineering. Chengdu:Southwest Jiaotong University. (in Chinese) 杨筱,2018. 基于IDA的型钢混凝土异形柱框架地震易损性分析. 西安:西安建筑科技大学.Yang X. ,2018. Seismic fragility analysis of steel reinforced concrete frame with special-shaped columns based on the IDA. Xi'an:Xi'an University of Architecture and Technology. (in Chinese) Bommer J. J., Magenes G., Hancock J., et al., 2004. The influence of strong-motion duration on the seismic response of masonry structures. Bulletin of Earthquake Engineering, 2(1): 1−26. doi: 10.1023/B:BEEE.0000038948.95616.bf Bruneau M. , 1996. Performance of Steel Bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) Earthquake − A North American Perspective. In: Chan S. L. , Teng J. G. , eds. , Advances in Steel Structures (ICASS '96): Proceedings of International Conference on Advances in Steel Structures 11–14 December 1996, Hong Kong. Amsterdam: Elsevier, 547−552. Chandramohan R., Baker J. W., Deierlein G. G., 2016. Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records. Earthquake Spectra, 32(2): 927−950. doi: 10.1193/122813eqs298mr2 Fairhurst M., Bebamzadeh A., Ventura C. E., 2019. Effect of ground motion duration on reinforced concrete shear wall buildings. Earthquake Spectra, 35(1): 311−331. doi: 10.1193/101117EQS201M FEMA, 1999. HAZUS99 User’s manual. Washington, DC: Federal Emergency Management Agency. FEMA, 2000. Recommended seismic design criteria for new steel moment-frame buildings: FEMA-350. Washington, DC: Federal Emergency Management Agency. Foschaar J. C. , Baker J. W. , Deierlein G. G. , 2012. Preliminary assessment of ground motion duration effects on structural collapse. In: Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal. Hammad A., Moustafa M. A., 2020. Modeling sensitivity analysis of special concentrically braced frames under short and long duration ground motions. Soil Dynamics and Earthquake Engineering, 128: 105867. doi: 10.1016/j.soildyn.2019.105867 Hancock J., Watson-Lamprey J., Abrahamson N. A., et al., 2006. An improved method of matching response spectra of recorded earthquake ground motion using wavelets. Journal of Earthquake Engineering, 10(1): 67−89. Hancock J., Bommer J. J., 2007. Using spectral matched records to explore the influence of strong-motion duration on inelastic structural response. Soil Dynamics and Earthquake Engineering, 27(4): 291−299. doi: 10.1016/j.soildyn.2006.09.004 Hwang S. H., Mangalathu S., Jeon J. S., 2021. Quantifying the effects of long‐duration earthquake ground motions on the financial losses of steel moment resisting frame buildings of varying design risk category. Earthquake Engineering & Structural Dynamics, 50(5): 1451−1468. Luco N., Cornell C. A., 2000. Effects of connection fractures on SMRF seismic drift demands. Journal of Structural Engineering, 126(1): 127−136. doi: 10.1061/(ASCE)0733-9445(2000)126:1(127) Luco N., Cornell C. A., 2007. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthquake Spectra, 23(2): 357−392. doi: 10.1193/1.2723158 Pan Y. X., Ventura C. E., Liam Finn W. D., 2018. Effects of ground motion duration on the seismic performance and collapse rate of light-frame wood houses. Journal of Structural Engineering, 144(8): 04018112. doi: 10.1061/(ASCE)ST.1943-541X.0002104 Park Y. J., Ang A. H. S., Wen Y. K., 1985. Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering, 111(4): 740−757. doi: 10.1061/(ASCE)0733-9445(1985)111:4(740) Samanta A. , Megawati K. , Pan T. C. , 2012. Duration-dependent inelastic response spectra and effect of ground motion duration. In: Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal. Somerville P. G., Smith N. F., Graves R. W., et al., 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1): 199−222. doi: 10.1785/gssrl.68.1.199 Trifunac M. D., Brady A. G., 1975. A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65(3): 581−626. -