Seismic Performance Analysis of RSC Double-deck Bridge Bent with Steel-tube Grout Damper
-
摘要: 为实现双层桥梁排架墩地震损伤控制设计,提出上层排架采用摇摆-自复位(Rocking Self-Centering,RSC)体系、下层排架不摇摆的双层桥梁排架墩设计思路,并采用钢管灌浆阻尼器(Steel-tube Grout Damper,SGD)提升摇摆接缝处的耗能能力。基于OpenSees数值分析平台分别建立了SGD和外置SGD的RSC双层排架墩抗震数值分析模型,结合试验结果验证了SGD和RSC排架墩建模方法的准确性。选取7条近断层地震动记录,基于增量动力分析(Incremental Dynamic Analysis,IDA)手段,研究外置SGD的RSC双层排架墩的地震反应。研究结果表明,当PGA为0.1 g时,SGD开始屈服耗能;当PGA为0.4 g时,SGD最大变形为名义极限变形的53.44%,无粘结预应力筋最大应力为名义屈服强度的59.60%;当PGA为0.8 g时,SGD接近拉断,预应力筋最大应力为名义屈服强度的84.78%;与耗能角钢相比,SGD变形及耗能能力更强,在强震作用下更不易发生拉断破坏。Abstract: A new design method for double-deck bridge bents was proposed to achieve seismic damage control. This method incorporates a rocking self-centering (RSC) structure for the upper-floor piers, while the lower-floor piers remain non-rocking. Additionally, steel-tube grout dampers (SGDs) are used to enhance the energy dissipation capacity of the joints. Numerical analysis models for the seismic behavior of the SGD and the RSC bent with SGD were developed using the OpenSees platform, and their accuracy was verified by comparing them with test data. Seven near-fault ground motions were selected, and incremental dynamic analysis (IDA) was conducted to study the seismic behavior of the bent. The study results indicate the following: (1) When the peak ground acceleration (PGA) is 0.1 g, the SGD yields and dissipates energy. (2) At a PGA of 0.4 g, the maximum deformation of the SGD is only 53.44% of the nominal ultimate maximum deformation, and the maximum stress of the unbonded prestressing tendons is 59.60% of their nominal yield strength. (3) When the PGA reaches 0.8 g, the SGD is close to rupture, and the maximum stress of the prestressing tendons is 84.78% of their nominal yield strength. Compared to steel angles, SGDs exhibit greater deformation and energy dissipation capacity and are less prone to rupture damage under strong earthquakes.
-
表 1 选取的地震动记录
Table 1. Selected earthquake records
编号 记录名称 断层距/km PGA/g NO. 1 TCU052-NS 1.84 0.49 NO. 2 TCU065-EW 2.49 0.79 NO. 3 TCU067-EW 1.11 0.50 NO. 4 TCU068-EW 3.01 0.51 NO. 5 TCU082-EW 4.47 0.23 NO. 6 TCU102-EW 1.19 0.30 NO. 7 TCU120-EW 9.87 0.23 表 2 设置SGD的RSC双层排架桥墩地震响应平均值
Table 2. Average seismic response of the RSC double-deck bridge bents with SGD
结构响应 PGA/g 0.1 0.2 0.4 0.8 顶层层间位移角/% 0.21 0.54 2.26 4.07 底层层间位移角/% 0.03 0.06 0.12 0.26 SGD最大变形/mm 0.50 2.20 15.70 26.53 预应力筋最大应力/MPa 589.86 630.32 886.17 1260.61 -
蔡小宁,孟少平,孙巍巍等,2012. 顶底角钢连接半刚性钢结构抗震性能数值分析. 工程力学,29(7):124−129,146. doi: 10.6052/j.issn.1000-4750.2010.09.0667Cai X. N., Meng S. P., Sun W. W., et al., 2012. Numerical analysis for seismic behavior of semi-rigid steel beam-to-column connection with top-and-seat angles. Engineering Mechanics, 29(7): 124−129,146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.09.0667 石岩,钟正午,秦洪果等,2021. 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法. 工程力学,38(8):166−177,203. doi: 10.6052/j.issn.1000-4750.2020.08.0575Shi Y., Zhong Z. W., Qin H. G., et al., 2021. Seismic performance and corresponding design method of rocking self-centering bridge bents equipped with LEAD-extrusion dampers. Engineering Mechanics, 38(8): 166−177,203. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0575 孙治国,华承俊,靳建楠等,2016. 基于OpenSees的钢筋混凝土桥墩抗震数值分析模型. 世界地震工程,32(1):266−276.Sun Z. G., Hua C. J., Jin J. N., et al., 2016. Numerical seismic analysis model for reinforced concrete bridge piers based on OpenSees. World Earthquake Engineering, 32(1): 266−276. (in Chinese) 孙治国,谷明洋,司炳君等,2017. 外置角钢摇摆-自复位双柱墩抗震性能分析. 中国公路学报,30(12):40−49. doi: 10.3969/j.issn.1001-7372.2017.12.005Sun Z. G., Gu M. Y., Si B. J., et al., 2017. Seismic behavior analyses of rocking self-centering double column bridge bents using external angles. China Journal of Highway and Transport, 30(12): 40−49. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.12.005 孙治国,赵泰儀,王东升等,2020. 基于RSC体系的双层桥梁排架墩地震损伤控制设计. 中国公路学报,33(3):97−106. doi: 10.3969/j.issn.1001-7372.2020.03.009Sun Z. G., Zhao T. Y., Wang D. S., et al., 2020. Seismic damage control design for double-deck bridge bents based on rocking self-centering system. China Journal of Highway and Transport, 33(3): 97−106. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.03.009 孙治国,赵泰儀,韩强等,2021. 摇摆-自复位双层桥梁排架墩抗震体系研究. 振动工程学报,34(3):472−480.Sun Z. G., Zhao T. Y., Han Q., et al., 2021. Seismic resistance system for rocking self-centering double deck bridge bents. Journal of Vibration Engineering, 34(3): 472−480. (in Chinese) 张洁,管仲国,李建中,2017. 双层高架桥梁框架墩抗震性能试验研究. 工程力学,34(2):120−128.Zhang J., Guan Z. G., Li J. Z., 2017. Experimental research on seismic peformance of frame piers of double-deck viaducts. Engineering Mechanics, 34(2): 120−128. (in Chinese) 庄卫林,刘振宇,蒋劲松,2009. 汶川大地震公路桥梁震害分析及对策. 岩石力学与工程学报,28(7):1377−1387. doi: 10.3321/j.issn:1000-6915.2009.07.011Zhuang W. L., Liu Z. Y., Jiang J. S., 2009. Earthquake-induced damage analysis of highway bridges in Wenchuan earthquake and countermeasures. Chinese Journal of Rock Mechanics and Engineering, 28(7): 1377−1387. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.07.011 Bedriñana L. A., Tani M., Nishiyama M., 2021. Deformation and cyclic buckling capacity of external replaceable hysteretic dampers for unbonded post-tensioned precast concrete walls. Engineering Structures, 235: 112045. doi: 10.1016/j.engstruct.2021.112045 Fujino Y., Hashimoto S., Abe M., 2005. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. I: residual inclination of reinforced concrete piers. Journal of Bridge Engineering, 10(1): 45−53. Garlock M. M., Ricles J. M., Sause R., 2003. Cyclic load tests and analysis of bolted top-and-seat angle connections. Journal of Structural Engineering, 129(12): 1615−1625. doi: 10.1061/(ASCE)0733-9445(2003)129:12(1615) Jia Z. L., Wen J. N., Han Q., et al., 2021. Seismic response of a Reduced-scale continuous girder bridge with rocking Columns: experiment and analysis. Engineering Structures, 248: 113265. doi: 10.1016/j.engstruct.2021.113265 Kunnath S. K., Gross J. L., 1995. Inelastic response of the cypress viaduct to the Loma Prieta earthquake. Engineering Structures, 17(7): 485−493. doi: 10.1016/0141-0296(95)00103-E Marin A., Spacone E., 2006. Analysis of reinforced concrete elements including shear effects. ACI Structural Journal, 103(5): 645−655. Marriott D., Pampanin S., Palermo A., 2009. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters. Earthquake Engineering & Structural Dynamics, 38(3): 331−354. Marriott D., Pampanin S., Palermo A., 2011. Biaxial testing of unbonded post-tensioned rocking bridge piers with external replacable dissipaters. Earthquake Engineering & Structural Dynamics, 40(15): 1723−1741. Wang B. F., Han Q., Jia Z. L., et al., 2021. Seismic response analysis of the precast double-deck rocking frame bridge pier system. Soil Dynamics and Earthquake Engineering, 146: 106745. doi: 10.1016/j.soildyn.2021.106745 Yang S., Guan D. Z., Jia L. J., et al., 2019. Local bulging analysis of a restraint tube in a new buckling-restrained brace. Journal of Constructional Steel Research, 161: 98−113. doi: 10.1016/j.jcsr.2019.06.014