• ISSN 1673-5722
  • CN 11-5429/P

橡胶减震支座应用于两层两跨地铁车站结构中最优刚度和最优位置研究

李洋 杜贺港 张梓鸿 许成顺 麻全周

李洋,杜贺港,张梓鸿,许成顺,麻全周,2024. 橡胶减震支座应用于两层两跨地铁车站结构中最优刚度和最优位置研究. 震灾防御技术,19(2):342−354. doi:10.11899/zzfy20240214. doi: 10.11899/zzfy20240214
引用本文: 李洋,杜贺港,张梓鸿,许成顺,麻全周,2024. 橡胶减震支座应用于两层两跨地铁车站结构中最优刚度和最优位置研究. 震灾防御技术,19(2):342−354. doi:10.11899/zzfy20240214. doi: 10.11899/zzfy20240214
Li Yang, Du Hegang, Zhang Zihong, Xu Chengshun, Ma Quanzhou. Optimal Stiffness and Location of Rubber Damping Bearing Applied to Two Story and Two Span Subway Station Structure[J]. Technology for Earthquake Disaster Prevention, 2024, 19(2): 342-354. doi: 10.11899/zzfy20240214
Citation: Li Yang, Du Hegang, Zhang Zihong, Xu Chengshun, Ma Quanzhou. Optimal Stiffness and Location of Rubber Damping Bearing Applied to Two Story and Two Span Subway Station Structure[J]. Technology for Earthquake Disaster Prevention, 2024, 19(2): 342-354. doi: 10.11899/zzfy20240214

橡胶减震支座应用于两层两跨地铁车站结构中最优刚度和最优位置研究

doi: 10.11899/zzfy20240214
基金项目: 国家自然科学基金青年基金项目(51908553)
详细信息
    作者简介:

    李洋,男,生于1987年。博士,副研究员。主要从事结构抗震和防灾减灾研究。E-mail:13126599893@126.com

    通讯作者:

    张梓鸿,男,生于1990年。博士,助理研究员。主要从事轨道交通基础设施防灾减灾研究。E-mail:zhangzihong2021@126.com

Optimal Stiffness and Location of Rubber Damping Bearing Applied to Two Story and Two Span Subway Station Structure

  • 摘要: 本文以某两层两跨地铁车站结构为研究对象,采用地下结构Pushover分析方法分别对橡胶支座不同刚度和不同布设位置条件下地铁车站结构的地震破坏反应特点进行对比分析,进一步揭示了地铁车站结构布设橡胶隔震支座的最优刚度和最优布设位置。研究结果表明:(1)柱子一端布设橡胶支座后,对于柱子顶、底端剪力均有明显的减震效果,而对于弯矩仅在布设支座端表现出良好的减震效果;(2)对于地铁车站结构,柱子端部布设橡胶支座时其刚度比的优选范围为0.1左右;(3)仅在两层两跨车站结构某一层布设支座,当支座位于中板侧时,未布设支座层的中柱会出现损伤增大的现象;(4)在结构每层中柱均布设一个支座时,结构上柱顶部和下柱底部同时布设支座时柱子的损伤略低于其他位置工况;(5)两层两跨车站结构布设三个支座时,总体来讲此时所有中柱均取得良好的减震效果,尤其对于中柱顶、底端完全布设的柱子,其减震效果更为明显。
  • 图  1  橡胶支座布设位置

    Figure  1.  Layout positions of rubber bearings

    图  2  土-结构相互作用数值模型

    Figure  2.  Numerical model of soil-structure interaction

    图  3  剪切波速的分布

    Figure  3.  Distribution of shear wave velocity

    图  4  橡胶支座不同刚度时中柱宏观损伤对比

    Figure  4.  Comparison of macro damage of columns with rubber bearings with different stiffness

    图  5  橡胶支座不同刚度柱子层间位移对比

    Figure  5.  Comparison of horizontal relative displacement of columns with rubber bearings with different stiffness

    图  6  橡胶支座不同刚度下柱子减震率对比

    Figure  6.  Comparison of seismic absorption rate of columns with rubber bearings with different stiffness

    图  7  橡胶支座不同刚度下柱子剪力对比

    Figure  7.  Comparison of shear forces in columns with rubber bearings with different stiffness

    图  8  橡胶支座不同刚度下柱子弯矩对比

    Figure  8.  Comparison of bending moment in columns with rubber bearings with different stiffness

    图  9  橡胶支座不同刚度下对柱子剪力减震率对比

    Figure  9.  Comparison of seismic absorption rate of shear forces in columns with rubber bearings with different stiffness

    图  10  橡胶支座不同刚度下对柱子弯矩减震率对比

    Figure  10.  Comparison of seismic absorption rate of bending moment in columns with rubber bearings with different stiffness

    图  11  橡胶支座不同位置时中柱宏观损伤对比

    Figure  11.  Comparison of macro damage of columns with rubber bearings at different positions

    图  12  橡胶支座不同位置时柱子层间位移对比

    Figure  12.  Comparison of horizontal relative displacement of columns with rubber bearings at different positions

    图  13  柱子变形模式对比

    Figure  13.  Comparison of deformation modes of columns

    图  14  橡胶支座不同位置时中柱剪力对比

    Figure  14.  Comparison of shear forces in columns with rubber bearings at different positions

    图  15  橡胶支座不同位置时中柱弯矩对比

    Figure  15.  Comparison of bending moment in columns with rubber bearings at different positions

    表  1  数值模拟工况支座刚度比设置

    Table  1.   Numerical simulation cases-Bearing stiffness ratio

    工况编号 刚度比 工况编号 刚度比
    刚度-1 0.05 刚度-6 0.4
    刚度-2 0.1 刚度-7 0.5
    刚度-3 0.15 刚度-8 0.6
    刚度-4 0.2 刚度-9 0.8
    刚度-5 0.3 刚度-10 1.0-无支座
    下载: 导出CSV

    表  2  数值模拟工况橡胶支座布设位置

    Table  2.   Numerical simulation cases-Layout positions of rubber bearings

    工况编号 布设位置 工况编号 布设位置 工况编号 布设位置
    刚度-1 1 刚度-7 1、4 刚度-13 1、3、4
    刚度-2 2 刚度-8 2、3 刚度-14 2、3、4
    刚度-3 3 刚度-9 2、4 刚度-15 1、2、3、4
    刚度-4 4 刚度-10 3、4 刚度-16 无支座
    刚度-5 1、2 刚度-11 1、2、3
    刚度-6 1、3 刚度-12 1、2、4
    下载: 导出CSV
  • 丁洁民,涂雨,吴宏磊等,2019. 减隔震组合技术在高烈度抗震设防区的应用研究. 建筑结构学报,40(2):77−87.

    Ding J. M., Tu Y., Wu H. L., et al., 2019. Application research of seismic isolation system combined with energy-dissipation technology in high seismic intensity region. Journal of Building Structures, 40(2): 77−87. (in Chinese)
    杜修力,王刚,路德春,2016. 日本阪神地震中大开地铁车站地震破坏机理分析. 防灾减灾工程学报,36(2):165−171.

    Du X. L., Wang G., Lu D. C., 2016. Earthquake damage mechanism analysis of Dakai metro station by Kobe earthquake. Journal of Disaster Prevention and Mitigation Engineering, 36(2): 165−171. (in Chinese)
    杜修力,刘迪,许成顺等,2021. 橡胶支座在浅埋地下框架结构中的减震效果研究. 岩土工程学报,43(10):1761−1770. doi: 10.11779/CJGE202110001

    Du X. L., Liu D., Xu C. S., et al., 2021. Seismic mitigation effect of shallow-covered underground frame station with rubber bearings. Chinese Journal of Geotechnical Engineering, 43(10): 1761−1770. (in Chinese) doi: 10.11779/CJGE202110001
    韩淼,张文会,朱爱东等,2016. 不同层隔震结构在近断层地震作用下动力响应分析. 振动与冲击,35(5):120−124.

    Han M., Zhang W. H., Zhu A. D., et al., 2016. Dynamic response analysis for multi-story structures with different isolation stories under near-fault ground motions. Journal of Vibration and Shock, 35(5): 120−124. (in Chinese)
    刘文光,周福霖,庄学真等,1999. 柱端隔震夹层橡胶垫力学性能试验研究. 地震工程与工程振动,19(3):121−126. doi: 10.3969/j.issn.1000-1301.1999.03.022

    Liu W. G., Zhou F. L., Zhuang X. Z., et al., 1999. Mechanic characteristics of rubber bearings in column top isolation system. Earthquake Engineering and Engineering Vibration, 19(3): 121−126. (in Chinese) doi: 10.3969/j.issn.1000-1301.1999.03.022
    孟益平,李荣鑫,边家靓,2018. 地震作用下铅芯橡胶隔震支座在地铁车站中的应用. 安徽建筑大学学报,26(1):11−15. doi: 10.11921/j.issn.2095-8382.20180103

    Meng Y. P., Li R. X., Bian J. L., 2018. Application of lead-core rubber isolation bearing in subway station under earthquake. Journal of Anhui Jianzhu University, 26(1): 11−15. (in Chinese) doi: 10.11921/j.issn.2095-8382.20180103
    牟翠翠,张立明,2016. 工程抗震中的隔震技术研究综述. 建材技术与应用,(3):12−14. doi: 10.3969/j.issn.1009-9441.2016.03.004

    Mou C. C., Zhang L. M., 2016. Research summary on seismic isolation technology in earthquake resistant engineering. Research & Application of Building Materials, (3): 12−14. (in Chinese) doi: 10.3969/j.issn.1009-9441.2016.03.004
    日本建筑学会,2006. 隔震结构设计. 刘文光,译. 北京:地震出版社.

    Architectural Institute of Japan,2006. Recommendation for the design of base isolated buildings. Liu W. G. ,trans. Beijing:Seismological Press. (in Chinese)
    陶连金,李卓遥,安军海等,2018. 地铁车站工程应用叠层橡胶支座隔震效果的研究. 公路,63(7):328−333.

    Tao L. J., Li Z. Y., An J. H., et al., 2018. Study of isolation effect for laminated rubber bearing applied in the metro station engineering. Highway, 63(7): 328−333. (in Chinese)
    庄海洋,陈国兴,梁艳仙等,2007. 土体动非线性黏弹性模型及其ABAQUS软件的实现. 岩土力学,28(3):436−442. doi: 10.3969/j.issn.1000-7598.2007.03.002

    Zhuang H. Y., Chen G. X., Liang Y. X., et al., 2007. A developed dynamic viscoelastic constitutive relations of soil and implemented by ABAQUS software. Rock and Soil Mechanics, 28(3): 436−442. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.03.002
    An X. H., Shawky A. A., Maekawa K., 1997. The collapse mechanism of a subway station during the Great Hanshin Earthquake. Cement and Concrete Composites, 19(3): 241−257. doi: 10.1016/S0958-9465(97)00014-0
    Chen Z. Y., Chen W., Bian G. Q., 2014. Seismic performance upgrading for underground structures by introducing shear panel dampers. Advances in Structural Engineering, 17(9): 1343−1357. doi: 10.1260/1369-4332.17.9.1343
    Du X. L., Jiang J. W., El Naggar M. H., et al., 2021. Interstory drift ratio associated with performance objectives for shallow-buried multistory and span subway stations in inhomogeneous soil profiles. Earthquake Engineering & Structural Dynamics, 50(2): 655−672.
    Hardin B. O., Drnevich V. P., 1972. Shear modulus and damping in soils: Design equations and curves. Journal of the Soil Mechanics and Foundations Division, 98(7): 667−692. doi: 10.1061/JSFEAQ.0001760
    Huo H., Bobet A., Fernández G., et al., 2005. Load transfer mechanisms between underground structure and surrounding ground: Evaluation of the failure of the Daikai station. Journal of Geotechnical and Geoenvironmental Engineering, 131(12): 1522−1533. doi: 10.1061/(ASCE)1090-0241(2005)131:12(1522)
    Iida H., Hiroto T., Yoshida N., et al., 1996. Damage to Daikai subway station. Soils and Foundations, 36(1): 283−300.
    Jiang J. W., Xu C. S., El Naggar H. M., et al., 2021. Improved Pushover method for seismic analysis of shallow buried underground rectangular frame structure. Soil Dynamics and Earthquake Engineering, 140: 106363. doi: 10.1016/j.soildyn.2020.106363
    Liu D., Xu C. S., Du X. L., et al., 2022. Seismic performance and fragility analysis of underground subway station with rubber bearings. Soil Dynamics and Earthquake Engineering, 162: 107511. doi: 10.1016/j.soildyn.2022.107511
    Liu Z. Q., Chen Z. Y., Liang S. B., et al., 2020. Isolation mechanism of a subway station structure with flexible devices at column ends obtained in shaking-table tests. Tunnelling and Underground Space Technology, 98: 103328. doi: 10.1016/j.tust.2020.103328
    Ma C., Lu D. C., Du X. L., 2018. Seismic performance upgrading for underground structures by introducing sliding isolation bearings. Tunnelling and Underground Space Technology, 74: 1−9. doi: 10.1016/j.tust.2018.01.007
    Ma C., Lu D. C., Du X. L., et al., 2019. Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes. Soil Dynamics and Earthquake Engineering, 119: 265−280. doi: 10.1016/j.soildyn.2019.01.017
    Nishioka T. , Unjoh S. , 2003. A simplified evaluation method for the seismic performance of underground common utility boxes. In: Proceedings of the 2003 Pacific Conference on Earthquake Engineering. Christchurch, New Zealand.
    Turkington D. H., Carr A. J., Cooke N., et al., 1989. Seismic design of bridges on lead-rubber bearings. Journal of Structural Engineering, 115(12): 3000−3016. doi: 10.1061/(ASCE)0733-9445(1989)115:12(3000)
    Wood J. H., 2007. Earthquake design of rectangular underground structures. Bulletin of the New Zealand Society for Earthquake Engineering, 40(1): 1−6. doi: 10.5459/bnzsee.40.1.1-6
    Xu C. S., Zhang Z. H., Li Y., et al., 2020. Validation of a numerical model based on dynamic centrifuge tests and studies on the earthquake damage mechanism of underground frame structures. Tunnelling and Underground Space Technology, 104: 103538. doi: 10.1016/j.tust.2020.103538
    Xu C. S., Zhang Z. H., Li Y., et al., 2021. Seismic response and failure mechanism of underground frame structures based on dynamic centrifuge tests. Earthquake Engineering & Structural Dynamics, 50(7): 2031−2048.
    Xu Z. G. , Du X. L. , Xu C. S. , et al. , 2019. Seismic mitigation mechanism of FPB applied in underground structure. In: The 2019 International Conference on Civil Engineering, Mechanics and Materials Science. Changsha.
    Zhang Z. H., Li Y., Xu C. S., et al., 2021. Study on seismic failure mechanism of shallow buried underground frame structures based on dynamic centrifuge tests. Soil Dynamics and Earthquake Engineering, 150: 106938. doi: 10.1016/j.soildyn.2021.106938
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  10
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-31
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回