Effect of Time-delayed Displacement Feedback on AMD Vibration Control under Seismic Excitation
-
摘要: 在传统被动TMD的基础上引入时滞位移反馈控制,将TMD转变为AMD。在AMD系统中,将时滞和反馈增益系数作为可调的控制参数。首先,建立AMD作用下两自由度耦合振动系统力学模型和数学模型;然后,采用特征值分析法判断控制参数平面上系统的稳定性;最后,以位移响应峰值、加速度响应峰值、位移均方根和加速度均方根为评价指标,基于Simulink仿真,分析控制参数对El Centro波作用下AMD振动控制效果的影响。研究结果表明,当系统物理参数固定时,控制参数取值决定了系统振动稳定性;相较于TMD作用的情况,合理的控制参数取值,可使AMD达到更佳的振动控制效果,主结构和阻尼器地震响应均在不同程度上得到抑制;在控制参数取值不合理的情况下,AMD振动控制效果变差。Abstract: A time-delayed displacement feedback is introduced to transform a traditional Tuned Mass Damper (TMD) system into an Active Mass Damper (AMD) system. The time delay and feedback gain coefficient are considered as adjustable control parameters for the AMD system. Firstly, the mechanical and mathematical models of the 2-degrees-of-freedom (2-DOF) coupling system with an AMD attached are established. Secondly, the stability of the system in the control parameter plane is determined using the eigenvalue analysis method. Finally, using Simulink simulations, the influence of control parameters on the vibration control effect of the AMD under EI Centro wave excitation is discussed, with evaluation indexes including the peak displacement response, peak acceleration response, root mean square (RMS) of displacement, and RMS of acceleration. The results show that the values of the control parameters determine the stability of the system with fixed physical parameters. An AMD with optimally tuned control parameters demonstrates a superior vibration control effect compared to a TMD. The seismic responses of both the primary structure and the damper are suppressed to varying degrees. However, if the control parameters are not optimally set, the vibration control effect of the AMD deteriorates.
-
Key words:
- Time-delayed displacement feedback /
- Seismic excitation /
- Stability /
- Vibration control
-
表 1 不同情况下系统响应峰值及其均方根
Table 1. Peak and root mean square of system response in three cases
控制参数取值 位移峰值/cm 加速度峰值/cm 位移均方根/cm 加速度均方根/Gal g/(N·m−1) τ/s 主结构 TMD AMD 主结构 TMD AMD 主结构 TMD AMD 主结构 TMD AMD 无控 0.92 — — 294 — — 0.30 — — 98 — — 0 — 0.74 4.85 — 232 1519 — 0.23 1.39 — 71 447 — −1 000 0.20 0.63 — 4.10 200 — 1263 0.21 — 1.24 68 — 382 表 2 时滞对系统响应峰值及其均方根的影响
Table 2. Effect of τ on peak and root mean square of system response
控制参数取值 位移峰值/cm 加速度峰值/cm 位移均方根/cm 加速度均方根/Gal g/(N·m−1) τ/s 主结构 AMD 主结构 AMD 主结构 AMD 主结构 AMD −1 000 0.05 0.90 6.28 307 2 033 0.29 1.98 90 666 0.10 0.93 10.11 287 3 236 0.30 2.66 95 858 0.15 0.69 6.76 202 2 115 0.21 1.85 68 570 0.20 0.63 4.10 200 1 263 0.21 1.24 68 382 0.25 0.67 3.29 216 1 024 0.22 1.02 72 319 0.30 0.74 3.27 233 1 024 0.23 1.02 75 328 0.35 0.81 3.90 247 1 243 0.25 1.31 80 441 0.40 0.93 6.89 291 2 287 0.29 2.09 94 725 -
陈茂生,王修勇,孙洪鑫等,2015. 考虑时滞的结构AMD系统控制方法与效果分析. 噪声与振动控制,35(6):17−21.Chen M. S., Wang X. Y., Sun H. X., et al., 2015. Control method and effect analysis of structure AMD system considering time delay. Noise and Vibration Control, 35(6): 17−21. (in Chinese) 陈宁,张红兵,李万祥等,2022. 变时滞反馈散料加工系统的参数设计. 振动与冲击,41(6):229−235,280.Chen N., Zhang H. B., Li W. X., et al., 2022. Parameter design of bulk material machining system with variable delay feedback. Journal of Vibration and Shock, 41(6): 229−235,280. (in Chinese) 李禄欣,彭剑,向明姣等,2018. 时滞加速度反馈控制下悬索的主共振分析. 噪声与振动控制,38(3):137−140,171. doi: 10.3969/j.issn.1006-1355.2018.03.026Li L. X., Peng J., Xiang M. J., et al., 2018. Primary resonance analysis of suspended cables under time-delay acceleration feedback control. Noise and Vibration Control, 38(3): 137−140,171. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.03.026 孙洪鑫,李建强,王修勇等,2017. 基于磁致伸缩作动器的拉索主动控制时滞补偿研究. 振动与冲击,36(14):208−215.Sun H. X., Li J. Q., Wang X. Y., et al., 2017. Time delay compensation for the active cable vibration control using giant magnetostrictive actuators. Journal of Vibration and Shock, 36(14): 208−215. (in Chinese) 谭述君,吴志刚,钟万勰,2006. 考虑控制器时滞的建筑结构减振H∞控制方法. 振动工程学报,19(4):537−542. doi: 10.3969/j.issn.1004-4523.2006.04.019Tan S. J., Wu Z. G., Zhong W. X., 2006. H∞ control for vibration attenuation of seismic-excited buildings with controller delays foundation. Journal of Vibration Engineering, 19(4): 537−542. (in Chinese) doi: 10.3969/j.issn.1004-4523.2006.04.019 唐贞云,李振宝,纪金豹等,2010. 伺服阀对地震模拟振动台控制性能影响及控制参数自整定. 震灾防御技术,5(1):20−26. doi: 10.3969/j.issn.1673-5722.2010.01.003Tang Z. Y., Li Z. B., Ji J. B., et al., 2010. Effect of servo value on shaking table control performance and auto-tuning of control parameters. Technology for Earthquake Disaster Prevention, 5(1): 20−26. (in Chinese) doi: 10.3969/j.issn.1673-5722.2010.01.003 张春巍,欧进萍,2010. 结构AMD系统的控制力特性. 振动工程学报,23(1):1−6. doi: 10.3969/j.issn.1004-4523.2010.01.001Zhang C. W., Ou J. P., 2010. Control force characteristics of structural AMD systems. Journal of Vibration Engineering, 23(1): 1−6. (in Chinese) doi: 10.3969/j.issn.1004-4523.2010.01.001 张舒,徐鉴,2017. 时滞耦合系统非线性动力学的研究进展. 力学学报,49(3):565−587. doi: 10.6052/0459-1879-17-123Zhang S., Xu J., 2017. Review on nonlinear dynamics in systems with coulpling delays. Chinese Journal of Theoretical and Applied Mechanics, 49(3): 565−587. (in Chinese) doi: 10.6052/0459-1879-17-123 周星德,陈道政,杜成斌,2007. 框架结构主动控制最优时滞研究. 计算力学学报,24(2):246−249. doi: 10.3969/j.issn.1007-4708.2007.02.022Zhou X. D., Chen D. Z., Du C. B., 2007. Research on optimal time-delay of active vibration control of frame structures. Chinese Journal of Computational Mechanics, 24(2): 246−249. (in Chinese) doi: 10.3969/j.issn.1007-4708.2007.02.022 朱宏,张斌,孙清,2013. 含时滞振动主动控制系统地震响应的数值分析. 振动与冲击,32(6):181−184. doi: 10.3969/j.issn.1000-3835.2013.06.035Zhu H., Zhang B., Sun Q., 2013. Numerical analysis on seismic response of active control system with time delays. Journal of Vibration and Shock, 32(6): 181−184. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.06.035 Le T. T., Jeon J. U., 2010. Time delay effects on performance and stability of a low cost electrostatic suspension system. International Journal of Precision Engineering and Manufacturing, 11(4): 549−557. doi: 10.1007/s12541-010-0063-7 Tsai H. C., Lin G. C., 1993. Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems. Earthquake Engineering & Structural Dynamics, 22(11): 957−973. Wei Y., Wei Y. J., Sun Y. N., et al., 2022. A smith structure-based delay compensation method for model predictive current control of PMSM system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4): 4090−4101. doi: 10.1109/JESTPE.2021.3137299 Yan G., Fang M. X., Xu J., 2019. Analysis and experiment of time-delayed optimal control for vehicle suspension system. Journal of Sound and Vibration, 446: 144−158. doi: 10.1016/j.jsv.2019.01.015