• ISSN 1673-5722
  • CN 11-5429/P

单桩式近海风机横向基频的微分变换法求解

张宗豪 余云燕 黄永健

张宗豪,余云燕,黄永健,2024. 单桩式近海风机横向基频的微分变换法求解. 震灾防御技术,19(2):314−325. doi:10.11899/zzfy20240211. doi: 10.11899/zzfy20240211
引用本文: 张宗豪,余云燕,黄永健,2024. 单桩式近海风机横向基频的微分变换法求解. 震灾防御技术,19(2):314−325. doi:10.11899/zzfy20240211. doi: 10.11899/zzfy20240211
Zhang Zonghao, Yu Yunyan, Huang Yongjian. Analysis of Lateral Fundamental Frequency of Monopile Offshore Wind Turbines Using Differential Transform Method[J]. Technology for Earthquake Disaster Prevention, 2024, 19(2): 314-325. doi: 10.11899/zzfy20240211
Citation: Zhang Zonghao, Yu Yunyan, Huang Yongjian. Analysis of Lateral Fundamental Frequency of Monopile Offshore Wind Turbines Using Differential Transform Method[J]. Technology for Earthquake Disaster Prevention, 2024, 19(2): 314-325. doi: 10.11899/zzfy20240211

单桩式近海风机横向基频的微分变换法求解

doi: 10.11899/zzfy20240211
基金项目: 甘肃省科技计划(21YF5GA050);甘肃省教育厅产业支撑计划(2021CYZC-28);甘肃省交通运输厅科技研发项目(2021-12);甘肃省基础研究创新群体(145RJIA332,21JR7RA347)
详细信息
    作者简介:

    张宗豪,男,生于1993年。硕士。主要从事结构耦合动力学方面的研究。E-mail:978460090@qq.com

    通讯作者:

    余云燕,女,生于1968年。博士,教授,博士生导师。主要从事岩土力学、土与结构耦合动力学方面的研究。E-mail:yuyunyan@mail.lzjtu.cn

Analysis of Lateral Fundamental Frequency of Monopile Offshore Wind Turbines Using Differential Transform Method

  • 摘要: 精准求解海上风机(OWTs)系统基频是海上风机结构研究的关键性难点之一。基于Euler–Bernoulli梁和Timoshenko梁理论,考虑风机塔筒变截面特性,根据是否考虑桩-土相互作用,分别建立底部弹簧模型与底部固接模型,采用微分变换法计算风机变截面梁横向振动方程,利用MATLAB软件求解风机系统基频。通过与实测结果进行比对,验证本文方法的有效性和精确性,并分析计算项数、塔筒高度、锥度比、弹簧刚度对风机基频的影响。研究结果表明,当计算项数为10及以上时,利用微分变换法计算基频满足精度要求;风机基频对塔筒高度变化的敏感性强,当塔筒高度增加时,基频下降趋势显著;变截面梁锥度比降低使塔筒底部直径变大,进而导致风机基频有所提升;考虑弹簧地基系统的风机基频随任一弹簧刚度的增加而提升,其中耦合弹簧刚度对风机基频的影响程度最大。
  • 图  1  海上风机计算模型

    Figure  1.  Calculation models of OWTs

    图  2  变截面梁示意

    Figure  2.  Schematic diagram of variable section beam

    图  3  计算项数与塔筒高度对风机基频的影响

    Figure  3.  Influence of value of N and tower height on fundamental frequency

    图  4  锥度比对风机基频的影响

    Figure  4.  Influence of taper ratio on fundamental frequency

    图  5  三弹簧刚度对基频的影响

    Figure  5.  Effect of three spring stiffness on fundamental frequency

    图  6  风机基频参数量化分析

    Figure  6.  Analysis of fundamental frequency parameter results

    表  1  DTM基本变换法则

    Table  1.   Fundamental transformation theorems of DTM

    原函数 转换函数
    $ f(x) = g(x) \pm h(x) $ $ F(k) = G(k) \pm H(k) $
    $ f(x) = c \cdot g(x) $ $ F(k) = c \cdot G(k) $
    $ f(x) = g(x) \cdot h(x) $ $ F(k) = \displaystyle\sum\limits_{l = 0}^k {G(l) \cdot H(k - l)} $
    $ f(x) = \dfrac{{{{\mathrm{d}}^n}g(x)}}{{{\mathrm{d}}{x^n}}} $ $ F(k) = (k + 1)(k + 2)\cdots(k + n)G(k + n) $
    $ f(x) = {x^n} $ $ F(k) = \delta (k - n) = x ,\; \left\{ {x = 1,k = n;x = 0,k \ne n} \right\} $
    下载: 导出CSV

    表  2  边界条件

    Table  2.   Boundary conditions table

    边界条件 物理量 T-B理论 E-B理论
    底部弹簧
    模型
    弯矩 $ \dfrac{{E{I_{{\mathrm{b}}}}}}{L}{\varphi {'}}(0) - {K_{\text{R}}}\varphi (0) + {K_{{\text{LR}}}}LU(0) = 0 $ $ \dfrac{{E{I_{{\mathrm{b}}}}}}{{{L^{2}}}}{Y{'}}{'}(0) - \dfrac{{{K_{\text{R}}}}}{L}{Y{'}}(0) + {K_{{\text{LR}}}}Y(0) = 0 $
    剪力 $ \kappa {A_{{\mathrm{b}}}}G\left[ {{U{'}}(0) - \varphi (0)} \right] + {K_{{\text{LR}}}}\varphi (0) - {K_{\text{L}}}LU(0) = 0 $ $ \dfrac{{E{I_{{\mathrm{b}}}}}}{{{L^{3}}}}{Y{'''}}(0) + \dfrac{{{K_{{\text{LR}}}}}}{L}{Y{'}}(0) - {K_{\text{L}}}Y(0) = 0 $
    底部固接
    模型
    位移 $ U\left( 0 \right) = 0 $ $ Y(0) = 0 $
    转角 $ \varphi \left( 0 \right) = 0 $ $ {Y{'}}(0) = 0 $
    风机顶部 弯矩 $ E{I_{{\mathrm{t}}}}{\varphi {'}}(1) = 0 $ $ E{I_{{\mathrm{t}}}}{Y{''}}(1) = 0 $
    剪力 $ \kappa {A_{t}}G\left[ {{U{'}}(1) - \varphi (1)} \right] + m{\omega ^2}U(1) = 0 $ $ E{I_{{\mathrm{t}}}}{Y{'''}}(1) + m{\omega ^2}Y(1) = 0 $
    DTM底部
    弹簧模型
    弯矩 $ \varPhi (1) - {\eta _{\text{R}}}\varPhi (0) + {\eta _{{\text{LR}}}}\nu (0) = 0 ,\;{\eta _{\text{R}}} = \dfrac{{{K_{\text{R}}}L}}{{E{I_{{\mathrm{b}}}}}} ,\; {\eta _{{\text{LR}}}} = \dfrac{{{K_{{\text{LR}}}}{L^2}}}{{E{I_{{\mathrm{b}}}}}}$ $ 2 Z(2) - {\eta _{\text{R}}}Z(1) + {\eta _{{\text{LR}}}}Z(0) = 0 ,\;{\eta _{\text{R}}} = \dfrac{{{K_{\text{R}}}L}}{{E{I_{{\mathrm{b}}}}}},\;{\eta _{{\text{LR}}}} = \dfrac{{{K_{{\text{LR}}}}{L^2}}}{{E{I_{{\mathrm{b}}}}}}$
    剪力 $ \nu (1) - \varPhi (0) + {\psi _{{\text{LR}}}}\varPhi (0) - {\psi _{\text{L}}}\nu (0) = 0,\;{\psi _{{\text{LR}}}} = \dfrac{{{K_{{\text{LR}}}}}}{{\kappa {A_{b}}G}} ,\; {\psi _{\text{L}}} = \dfrac{{{K_{\text{L}}}L}}{{\kappa {A_{b}}G}}$ $ 6 Z(3) + {\eta _{{\text{LR}}}}Z(1) - {\eta _{\text{L}}}Z(0) = 0 ,\;{\eta _{\text{L}}} = \dfrac{{{K_{\text{L}}}{L^3}}}{{E{I_{{\mathrm{b}}}}}} ,\;{\eta _{{\text{LR}}}} = \dfrac{{{K_{{\text{LR}}}}{L^2}}}{{E{I_{{\mathrm{b}}}}}} $
    DTM底部
    固接模型
    位移 $ \nu \left( 0 \right) = 0 $ $ Z(0) = 0 $
    转角 $ \varPhi \left( 0 \right) = 0 $ $ Z(1) = 0 $
    DTM风机
    顶部
    弯矩 $ \displaystyle\sum\limits_{k = 0}^N {(k + 1)\varphi (k + 1)} = 0 $ $ \displaystyle\sum\limits_{k = 0}^N {(k + 2)(k + 1)Z(k + 2)} = 0 $
    剪力 $ \displaystyle\sum\limits_{k = 0}^N {(k + 1)U(k + 1)} - \sum\limits_{k = 0}^N {\varphi (k)} + {\alpha _n}\sum\limits_{k = 0}^N {U(k)} = 0,\;{\alpha _n} = \dfrac{{m{\omega ^2}L}}{{\kappa {A_{{\mathrm{t}}}}G}} $ $ \displaystyle\sum\limits_{k = 0}^N {(k + 3)(k + 2)(k + 1)Z(k + 3)} + {\alpha _m}\sum\limits_{k = 0}^N {Z(k)} = 0 ,\;{\alpha _m} = \dfrac{{m{\omega ^2}{L^{3}}}}{{E{I_{{\mathrm{b}}}}}} $
    下载: 导出CSV

    表  3  风机规格参数

    Table  3.   Specifications of Irene Vorrink23, 28 and LelyA2

    规格参数 Irene Vorrink23 Irene Vorrink28 LelyA2
    材料密度/(kg·m−3 7 850 7 850 7 850
    RNA质量/t 35.7 35.7 32.0
    塔筒高/m 44.5 44.5 41.5
    塔筒底部直径/m 3.5 3.5 3.2
    塔筒顶部直径/m 1.7 1.7 1.9
    塔筒壁厚/mm 13 13 13
    材料杨氏模量/GPa 210 210 210
    平台高/m 6.0 5.8 4.6
    下载: 导出CSV

    表  4  风机系统基频结果验证

    Table  4.   Verification of OWTs fundamental frequency results

    风机 基频/Hz 相对误差/%
    文献实测频率 文献固接频率 T-B理论 E-B理论 T-B理论 E-B理论
    弹簧 固接 弹簧 固接 弹簧 固接 弹簧 固接
    LelyA2 0.634 0.713 0.642 0.691 0.644 0.688 1.26 3.09 1.57 3.51
    Irene Vorrink23 0.563 0.590 0.582 0.616 0.584 0.618 3.37 4.41 3.73 4.75
    Irene Vorrink28 0.560 0.586 0.580 0.614 0.581 0.615 3.57 4.79 3.75 4.95
    下载: 导出CSV
  • 李大潜,李立康,1974. 梁振动固有频率的计算. 数学学报,17(2):89−99.

    Li D. Q., Li L. K., 1974. Calculation of vibration natural frequency of beam. Acta Mathematica Sinica, 17(2): 89−99. (in Chinese)
    杨春宝,王睿,张建民,2018. 单桩基础型近海风机系统自振频率实用计算方法. 工程力学,35(4):219−225. doi: 10.6052/j.issn.1000-4750.2017.01.0046

    Yang C. B., Wang R., Zhang J. M., 2018. Numerical method for calculating system fundamental frequencies of offshore wind turbines with monopile foundations. Engineering Mechanics, 35(4): 219−225. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0046
    赵家奎,1988. 微分变换及其在电路中的应用. 武汉:华中理工大学出版社.

    Zhao J. K. ,1988. Differential transformation and its applications for electrical circuits. Wuhan:Huazhong University Press. (in Chinese)
    周叮,1996. 一类变截面梁横向自由振动的精确解析解. 振动与冲击,15(3):12−15.

    Zhou D., 1996. The exact analytical solution of transverse free vibration of a type of beams with variable cross-sections. Journal of Vibration and Shock, 15(3): 12−15. (in Chinese)
    Adhikari S., Bhattacharya S., 2012. Dynamic analysis of wind turbine towers on flexible foundations. Shock and Vibration, 19(1): 37−56. doi: 10.1155/2012/408493
    Arany L., Bhattacharya S., Adhikari S., et al., 2015. An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models. Soil Dynamics and Earthquake Engineering, 74: 40−45. doi: 10.1016/j.soildyn.2015.03.007
    Arany L., Bhattacharya S., Macdonald J. H. G., et al., 2016. Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI. Soil Dynamics and Earthquake Engineering, 83: 18−32. doi: 10.1016/j.soildyn.2015.12.011
    Balkaya M., Kaya M. O., Sağlamer A., 2009. Analysis of the vibration of an elastic beam supported on elastic soil using the differential transform method. Archive of Applied Mechanics, 79(2): 135−146. doi: 10.1007/s00419-008-0214-9
    Barltrop N. D. P. , Adams A. J. , 1991. Dynamics of fixed marine structures. University of Oxford: Butterworth-Heinemann Ltd.
    Çatal S., 2008. Solution of free vibration equations of beam on elastic soil by using differential transform method. Applied Mathematical Modelling, 32(9): 1744−1757. doi: 10.1016/j.apm.2007.06.010
    Cowper G. R., 1966. The shear coefficient in Timoshenko’s beam theory. Journal of Applied Mechanics, 33(2): 335−340. doi: 10.1115/1.3625046
    Kühn M. , Cockerill T. T. , Harland L. A. , et al. , 1998. Opti-owecs final report vol. 2: Methods assisting the design of offshore wind energy conversion systems. Delft University of Technology: Faculty of Civil Engineering and Geoscience.
    Poulos H. G. , Davis E. H. , 1980. Pile foundation analysis and design. New York: Wiley (John) & Sons.
    Torabi K., Afshari H., Zafari E., 2012. Transverse vibration of non-uniform Euler-Bernoulli beam, using differential transform method (DTM). Applied Mechanics and Materials, 110-116: 2400−2405.
    Uściłowska A., Kołodziej J. A., 1998. Free vibration of immersed column carrying a tip mass. Journal of Sound and Vibration, 216(1): 147−157. doi: 10.1006/jsvi.1998.1694
    Van Der Tempel J., Molenaar D. P., 2002. Wind turbine structural dynamics–a review of the principles for modern power generation, onshore and offshore. Wind Engineering, 26(4): 211−222. doi: 10.1260/030952402321039412
    Zuo H. R., Bi K. M., Hao H., 2018. Dynamic analyses of operating offshore wind turbines including soil-structure interaction. Engineering Structures, 157: 42−62. doi: 10.1016/j.engstruct.2017.12.001
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  32
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-17
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回