Earthquake Disaster Risk Assessment in Shenzhen and Related Discussion
-
摘要: 以第一次全国自然灾害综合风险普查的总体要求为框架,结合深圳市特点,以深圳市(深汕特别合作区除外)单体调查房屋为评估数据基础,选择适合深圳市房屋特点的地震易损性矩阵,在开展单体房屋震害评估的基础上,进行人员死亡和经济损失评估。深圳市地震灾害风险评估考虑4个超越概率水平,即50年63%(常遇地震)、50年10%(设防地震)、50年2%(罕遇地震)、100年1%(极罕遇地震)的地震作用影响。文中讨论了100年1%(极罕遇地震)地震作用下深圳市建筑物破坏所导致的人员死亡风险和建筑物直接经济损失风险,并给出风险治理的参考建议。Abstract: This study utilizes the overall requirements of the first national comprehensive natural disaster risk survey as its framework and incorporates the specific characteristics of Shenzhen City. Using individual surveyed houses in Shenzhen City (excluding the Shenzhen-Shantou Special Cooperation Zone) as the basis for assessment data, it presents a seismic vulnerability matrix tailored to Shenzhen's housing characteristics. The study assesses personnel mortality and economic losses based on seismic damage evaluations of individual houses. The seismic disaster risk assessment in Shenzhen considers four exceedance probability levels: 63% in 50 years (common earthquakes), 10% in 50 years (design earthquakes), 2% in 50 years (rare earthquakes), and 1% in 100 years (extremely rare earthquakes). It discusses the risks of personnel mortality and direct economic losses to buildings from the 1% in 100 years (extremely rare earthquake) event and provides recommendations for risk management.
-
Key words:
- Disaster risks /
- Earthquake disaster risk assessment /
- Shenzhen
-
表 1 深圳市(不含深汕)单体房屋结构类型归并对应表
Table 1. Reclassification for single building structure types in Shenzhen (Excluding SSCZ)
调查结构类型 归并后结构类型 钢结构 钢结构 钢筋混凝土结构 钢筋混凝土结构 砌体结构 砌体结构 木结构 砖(土、石)木、木、简易结构 其他 子类钢混+钢结构 钢结构 子类砖木 砖(土、石)木、木、简易结构 子类土、石木结构 砖(土、石)木、木、简易结构 子类砌体+钢架 钢结构 子类简易结构 砖(土、石)木、木、简易结构 子类混合结构 8层及以上的非住宅钢混+钢结构 钢筋混凝土结构 7层及以下的住宅砌体+其他结构 砌体结构 非住宅钢混+钢结构 钢筋混凝土结构 子类组合结构 钢混+钢结构 钢结构 砌体+其他结构 砌体结构 子类其他住宅 1~2层 砖(土、石)木、木、简易结构 3~8层 砌体结构 8层以上 钢筋混凝土结构 子类其他非住宅 1~2层 砖(土、石)木、木、简易结构 3~8层 砌体结构 8层以上 钢筋混凝土结构 子类无 8层及以上(非住宅) 钢筋混凝土结构 7层及以下(住宅和非住宅) 砌体结构 表 2 深圳市(不含深汕)单体房屋栋数分区统计表
Table 2. Statistical results of single building structure types in each district of Shenzhen (Excluding SSCZ)
区划名称 房屋数量/栋 钢筋混凝土结构 钢结构 砌体结构 砖(土、石)木、木、简易结构 合计 大鹏新区 5023 1332 18968 166 25489 盐田区 3228 96 1661 7 4992 坪山区 31092 1469 8925 14 41500 光明区 26756 1500 19650 41 47947 罗湖区 15243 628 1634 23 17528 福田区 25606 876 4060 44 30586 南山区 23622 1675 5944 148 31389 龙华区 50675 2508 17477 76 70736 龙岗区 113887 5372 35962 4918 160139 宝安区 102287 3894 45550 77 151808 合计/栋 397419 19350 159831 5514 582114 表 3 深圳市(不含深汕)各区人口表
Table 3. Population in each district of Shenzhen (Excluding SSCZ)
区划名称 人数/人 面积/km2 密度/(人·km-2) 大鹏新区 156236 295.31 529 盐田区 214225 77.89 2750 坪山区 551333 163.83 3365 光明区 1095289 155.22 7056 罗湖区 1143801 78.98 14482 福田区 1553225 73.50 21134 南山区 1795826 178.09 10084 龙华区 2528872 175.74 14390 龙岗区 3979037 387.92 10257 宝安区 4476554 384.09 11655 合计 17494398 1970.57 8778 表 4 基岩地震动衰减关系模型系数
Table 4. Coefficients of attenuation relation model of bedrock ground motion
反应谱周期T/s 方向 A1 B1 A2 B2 C D E 标准差S PGA 长轴 2.024 0.673 3.565 0.435 2.329 2.088 0.399 0.245 短轴 1.204 0.664 2.789 0.420 2.016 0.944 0.447 0.245 0.20 长轴 2.558 0.643 3.680 0.470 2.309 2.088 0.399 0.261 短轴 1.779 0.628 2.918 0.454 1.999 0.994 0.447 0.261 1.00 长轴 0.226 0.895 2.409 0.559 2.157 2.088 0.399 0.300 短轴 −0.599 0.895 1.644 0.550 1.873 0.994 0.447 0.300 2.00 长轴 −0.666 0.936 1.247 0.641 2.047 2.088 0.399 0.342 短轴 −1.449 0.934 0.516 0.632 1.779 0.994 0.447 0.342 6.00 长轴 −1.432 0.859 −1.432 0.859 1.857 2.088 0.399 0.333 短轴 −2.041 0.841 −2.041 0.841 1.617 0.994 0.447 0.333 表 5 钢结构房屋易损性矩阵
Table 5. Vulnerability matrix of steel structure house
烈度 基本完好 轻微破坏 中等破坏 严重破坏 毁坏 Ⅵ 100% 0 0 0 0 Ⅶ 96.72% 3.03% 0.25% 0 0 Ⅷ 50.76% 45.96% 3.03% 0.25% 0 表 6 钢筋混凝土结构房屋易损性矩阵
Table 6. Vulnerability matrix of reinforced concrete house
烈度 基本完好 轻微破坏 中等破坏 严重破坏 毁坏 Ⅵ 99.75% 0.25% 0 0 0 Ⅶ 88.18% 11.82% 0 0 0 Ⅷ 49.00% 38.10% 12.07% 0.83% 0 表 7 砌体结构房屋易损性矩阵
Table 7. Vulnerability matrix of masonry house
烈度 基本完好 轻微破坏 中等破坏 严重破坏 毁坏 Ⅵ 76.46% 20.19% 2.95% 0.40% 0 Ⅶ 48.48% 31.36% 15.32% 4.46% 0.38% Ⅷ 16.01% 31.85% 35.23% 14.61% 2.30% 表 8 砖(土、石)木、木、简易结构房屋易损性矩阵
Table 8. Vulnerability matrix of brick (raw-soil, stone)with timber, timber, and simple structure houses
烈度 基本完好 轻微破坏 中等破坏 严重破坏 毁坏 Ⅵ 45% 36% 13% 6% 0 Ⅶ 16% 28% 30% 16% 10% Ⅷ 7% 12% 29% 27% 25% 表 9 不同分区分类的修正系数
Table 9. Correction factors for different partition classification
分区 一类地区 二类地区 三类地区 四类地区 五类地区 六类及以上地区 修正系数 0.6 0.76 0.85 0.9 0.95 1 表 10 人员死亡地震灾害风险等级分级指标
Table 10. Earthquake disaster risk grading index by fatality
风险等级 分级指标/人 Ⅰ级 死亡人数≥300 Ⅱ级 300>死亡人数≥150 Ⅲ级 150>死亡人数≥50 Ⅳ级 50>死亡人数≥10 Ⅴ级 死亡人数<10 表 11 建筑物直接经济损失地震灾害风险等级分级指标
Table 11. Earthquake disaster risk grading index by direct economic loss of buildings
风险等级 分级指标 Ⅰ级 (直接经济损失/区域内上年度GDP)≥75% Ⅱ级 75%>(直接经济损失/区域内上年度GDP)≥45% Ⅲ级 45%>(直接经济损失/区域内上年度GDP)≥25% Ⅳ级 25%>(直接经济损失/区域内上年度GDP)≥15% Ⅴ级 (直接经济损失/区域内上年度GDP)<15% 表 12 峰值加速度区间与烈度对照表
Table 12. Relationship between seismic intensity and peak ground acceleration
烈度 峰值加速度/Gal Ⅵ以下 PGA<50 Ⅵ 50≤PGA<100 Ⅶ 100≤PGA<200 Ⅷ 200≤PGA<400 Ⅸ PGA≥400 表 13 100年超越概率1%地震作用下不同破坏状态建筑面积评估统计结果
Table 13. Evaluation and statistical results of building area under different damage states with the 1% probability of exceedance in 100 years in Shenzhen
烈度 建筑面积/m2 基本完好 轻微破坏 中等破坏 严重破坏 毁坏 VIII 48556.40 ×10438477.72 ×10412708.26 ×1041255.31 ×10485.75×104 VII 14226.85 ×1042045.74 ×104117.42×104 34.20×104 3.35×104 总计 62783.25 ×10440523.46 ×10412825.68 ×1041289.50 ×10489.10×104 -
《2016−2025中国大陆地震危险区与地震灾害损失预测研究》项目组,2020.2016−2025年中国大陆地震危险区与地震灾害损失预测研究. 北京:中国地图出版社,245−261.《Forecasting Researches on Earthquake Risk Regions and Disaster Loss of Chinese Mainland During 2016 to 2025》Project Team, 2020. Forecasting researches on earthquake risk regions and disaster loss of Chinese mainland during 2016 to 2025. Beijing: China Cartographic Publishing House, 245−261. (in Chinese) 曹彦波,李永强,2017. 云南地震应急关键技术与信息服务. 昆明:云南科技出版社,79−80. 陈伟光,赵红梅,李富光等,2001. 深圳市断裂构造的活动性及其对地质环境的影响. 热带地理,21(1):45−50,60. doi: 10.3969/j.issn.1001-5221.2001.01.010Chen W. G., Zhao H. M., Li F. G., et al., 2001. Fault activities and their influence upon geologic environment in Shenzhen city. Tropical Geography, 21(1): 45−50,60. (in Chinese) doi: 10.3969/j.issn.1001-5221.2001.01.010 傅征祥,李革平,1993. 地震生命损失研究. 北京:地震出版社. 胡少卿,孙柏涛,王东明等,2017. 经验震害矩阵的完善方法研究. 地震工程与工程振动,27(6):46−50.Hu S. Q., Sun B. T., Wang D. M., et al., 2017. Approach to making empirical earthquake damage Matrix. Journal of Earthquake Engineering and Engineering Vibration, 27(6): 46−50. (in Chinese) 姜慧,郭恩栋,林旭川等,2022. 城市群地震灾害风险评估方法的一点探索−以粤港澳大湾区为例. 地震学报,44(5):868−880. doi: 10.11939/jass.20220096Jiang H., Guo E. D., Lin X. C., et al., 2022. A new exploration of the risk assessment method of earthquake disasters in urban agglomerations: taking the Guangdong-Hong Kong-Macao greater bay area as an example. Acta Seismologica Sinica, 44(5): 868−880. (in Chinese) doi: 10.11939/jass.20220096 马小平,林旭川,朱瑞等,2023. 城市建筑物情景构建及地震风险评估−−以玛曲县为例. 地震工程与工程振动,43(3):46−55.Ma X. P., Lin X. C., Zhu R., et al., 2023. Scenario construction of urban buildings and earthquake risk assessment: an example of Maqu County. Earthquake Engineering and Engineering Vibration, 43(3): 46−55. (in Chinese) 唐丽华,李山有,宋立军,2016. 地震灾害风险评估方法的对比分析−−以乌鲁木齐市为例. 地震工程学报,38(5):838−845. doi: 10.3969/j.issn.1000-0844.2016.05.0838Tang L. H., Li S. Y., Song L. J., 2016. Comparative analysis of earthquake risk assessment methods: a case study on Urumqi City. China Earthquake Engineering Journal, 38(5): 838−845. (in Chinese) doi: 10.3969/j.issn.1000-0844.2016.05.0838 王东明,高永武,2019. 城市建筑群概率地震灾害风险评估研究. 工程力学,36(7):165−173.Wang D. M., Gao Y. W., 2019. Study on the probabilistic seismic disaster risk assessment of urban building complex. Engineering Mechanics, 36(7): 165−173. (in Chinese) 徐俊,余成华,汤德刚等,2012. 深圳市活断层探测与地震危险性评价. 城市勘测,(1):161−166. doi: 10.3969/j.issn.1672-8262.2012.01.057Xu J., Yu C. H., Tang D. G., et al., 2012. Active fault exploration and seismic hazard assessment in Shenzhen city. Urban Geotechnical Investigation & Surveying, (1): 161−166. (in Chinese) doi: 10.3969/j.issn.1672-8262.2012.01.057 姚新强,孙柏涛,陈宇坤等,2016. 基于震害预测的动态震害矩阵方法研究. 地震工程学报,38(2):318−322. doi: 10.3969/j.issn.1000-0844.2016.02.0318Yao X. Q., Sun B. T., Chen Y. K., et al., 2016. Study on method of dynamic earthquake damage matrix based on seismic damage prediction. China Earthquake Engineering Journal, 38(2): 318−322. (in Chinese) doi: 10.3969/j.issn.1000-0844.2016.02.0318 尹之潜,杨淑文,2004. 地震损失分析与设防标准. 北京:地震出版社. 张桂欣,孙柏涛,陈相兆,2017. 分区分类的生命线工程地震直接经济损失研究. 地震,37(4):69−79. doi: 10.3969/j.issn.1000-3274.2017.04.007Zhang G. X., Sun B. T., Chen X. Z., 2017. Earthquake direct economic loss of lifeline engineering based on sub-area classification. Earthquake, 37(4): 69−79. (in Chinese) doi: 10.3969/j.issn.1000-3274.2017.04.007 张令心,刘琛,刘洁平,2015. 砖砌体房屋三水准抗震能力判别方法. 土木工程学报,48(12):34−40.Zhang L. X., Liu C., Liu J. P., 2015. Three level seismic capacity identification method of brick buildings. China Civil Engineering Journal, 48(12): 34−40. (in Chinese) 周光全,谭文红,施伟华等,2007. 云南地区房屋建筑的震害矩阵. 中国地震,23(2):115−123. doi: 10.3969/j.issn.1001-4683.2007.02.001Zhou G. Q., Tan W. H., Shi W. H., et al., 2007. Seismic hazard matrix of house construction in Yunnan. Earthquake Research in China, 23(2): 115−123. (in Chinese) doi: 10.3969/j.issn.1001-4683.2007.02.001 Sun B. T., Zhang G. X., Chen X. Z., 2018. The distribution of seismic capacity of buildings in Mainland of China. In: 16th European Conference on Earthquake Engineering.Greece:ECEE.