Wind-induced Vibration Control and Parameter Optimization of the Cable-lever Rotation Inerter System in the Transmission Tower
-
摘要: 输电塔作为受风控制的高耸空间钢结构,风振控制技术是解决铁塔风灾受损、倒塔的重要技术手段之一。针对现有输电塔风振控制技术适应性不足的问题,提出了可在自立式输电塔体内布置的拉索-杠杆式旋转惯容阻尼器(CLRID)和优化设计方法。首先推导了CLRID典型平面刚架运动方程,然后开展了基于脉动风荷载特性的CLRID减振性能参数分析,最后考虑塔架性能需求对CLRID进行参数优化,得到固定布置夹角下的CLRID最优设计参数。研究结果表明,除惯容对阻尼单元变形的放大效应外,杠杆可实现对阻尼单元的二次放大作用,继续增大阻尼器行程,可弥补传统体内拉索体系斜向布置的缺陷,使具有不同拉索布置角度的CLRID对塔架具有相同的位移响应控制效果。同时,通过参数优化分析,CLRID拉索布置角度可控制在30°~50°,杠杆放大系数可控制在1~2。当确定目标减振比后,基于输电塔塔架性能的优化设计方法可使CLRID实现精准的风振控制。Abstract: As a high-rise space steel structure controlled by wind, the wind vibration control technology is one of the important technical means to reduce the risk of wind damage and tower collapse of the transmission tower. Aiming at the problem of inadequate adaptability of existing wind vibration control technology for transmission towers, a cable-lever rotation inerter system and its optimization design method that can be installed in the body of self-supporting transmission towers are proposed. Firstly, the motion control equations of a typical transmission tower sections with a cable-lever rotation inerter damper (CLRID) are established, and then the parameters of CLRID are analyzed based on the fluctuating wind load characteristics for vibration control. Finally, the parameters of CLRID are optimized in considering the performance demand of the tower, and the optimal designed parameters of CLRID are obtained under a fixed installed angle. Our results show that, in addition to the amplification effect of inerter on the deformation of damping element, the secondary amplification effect of damping element in RID can be realized by lever mechanism, and continue to increase the deformation of damper, which can make up for the shortcomings of oblique installation of traditional internal cable system, so that CLRID with different cable angles has the same control effect of displacement responses of tower. At the same time, through parameter optimization analysis, it is recommended that the installed angle of cable of CLRID can be controlled between 30°~ 50°, and the lever amplification factor can be controlled between 1~2. When the target vibration mitigation ratio is determined, wind-induced vibration control of the transmission tower can be achieved precisely by the optimal design method of CLRID based on the performance demand.
-
Key words:
- Transmission tower /
- Damper /
- Cable-lever system /
- Inerter /
- Stochastic response /
- H2 optimization /
- Wind-induced vibration control
-
表 1 不同布置夹角下CLRID最优设计参数
Table 1. Optimal designed parameters of CLRID with different angle
θ μ ζ κ α 0°(TVMD) 0.036 3 0.014 1 0.062 0 1.000 0 30° 0.056 5 0.014 9 0.115 9 1.286 5 45° 0.090 4 0.016 8 0.205 1 1.877 5 60° 0.125 6 0.018 5 0.369 0 3.121 4 表 2 不同目标减振比下CLRID最优设计参数
Table 2. Optimal designed parameters of CLRID with different Jt
Jt μ ζ κ α 0.7 0.056 1 0.007 7 0.161 3 1.727 5 0.6 0.091 8 0.017 1 0.223 4 1.759 9 0.5 0.144 0 0.032 9 0.380 1 1.835 4 -
曹枚根, 张若愚, 朱云祥等, 2022. 输电线路铁塔面内预应力拉索抗风加固及设计参数影响研究. 工业建筑, 52(8): 48—56Cao M. G. , Zhang R. Y. , Zhu Y. X. , et al. , 2022. Time history analysis on wind-induced response of UHV guyed single-mast transmission tower-line system. Industrial Construction, 52(8): 48—56. (in Chinese) 郭正兴, 罗斌, 2011. 大跨空间钢结构预应力施工技术研究与应用——大跨空间钢结构预应力技术发展与应用综述. 施工技术, 40(9): 101—108Guo Z. X. , Luo B. , 2011. Research and application of long-span space steel structure prestress construction technology—review on development and application of long-span space steel structure prestress technology. Construction Technology, 40(9): 101—108. (in Chinese) 贺业飞, 楼文娟, 孙炳楠等, 2005. 悬挂质量摆对大跨越输电塔的风振控制. 浙江大学学报(工学版), 39(12): 1891—1896He Y. F. , Lou W. J. , Sun B. N. , et al. , 2005. Wind-induced vibration control of long span transmission tower with suspended mass pendulums. Journal of Zhejiang University (Engineering Science), 39(12): 1891—1896. (in Chinese) 雷旭, 付兴, 肖凯等, 2018. 强风作用下输电塔结构不确定性倒塌分析. 中国电机工程学报, 38(S1): 266—274Lei X. , Fu X. , Xiao K. , et al. , 2018. Failure analysis of a transmission tower subjected to wind load using uncertainty method. Proceedings of the CSEE, 38(S1): 266—274. (in Chinese) 厉天威, 江巳彦, 赵建华等, 2016. 南方电网沿海地区输电线路风灾事故分析. 高压电器, 52(6): 23—28Li T. W. , Jiang S. Y. , Zhao J. H. , et al. , 2016. Wind accident analysis of southern grid coastal region transmission line. High Voltage Apparatus, 52(6): 23—28. (in Chinese) 李小芳, 2016. 台风荷载作用下110 kV输电塔薄弱部位加固研究. 长沙: 长沙理工大学.Li X. F. , 2016. Analysis of the reinforcement measures on weak parts of 110 kV transmission towers under the Typhoo. Changsha: Changsha University of Science & Technology. (in Chinese) 楼文娟, 姜雄, 夏亮等, 2013. 长横担输电塔风致薄弱部位及加强措施. 浙江大学学报(工学版), 47(10): 1798—1804Lou W. J. , Jiang X. , Xia L. , et al. , 2013. Wind-induced weak parts and reinforcement methods of long cross-armed transmission tower. Journal of Zhejiang University (Engineering Science), 47(10): 1798—1804. (in Chinese) 孙吉波, 辛拓, 王延纬, 2014. 广东电网抗击超强台风“威马逊”的经验及反思. 广东电力, 27(12): 80—83Sun J. B. , Xin T. , Wang Y. W. , 2014. Experience of Guangdong power grid resisting super typhoon “Rammasun” and introspection. Guangdong Electric Power, 27(12): 80—83. (in Chinese) 吴明祥, 包建强, 叶尹等, 2007. 超强台风“桑美”引起温州电网输电线路事故的分析. 电力建设, 28(9): 39—41Wu M. X. , Bao J. Q. , Ye Y. , et al. , 2007. Transmission line accident analysis of Wenzhou grid caused by super typhoon "SAOMAI". Electric Power Construction, 28(9): 39—41. (in Chinese) 肖琦, 王永杰, 肖茂祥等, 2011. 横隔面在高压输电塔抗风设计中的作用分析. 东北电力大学学报, 31(S1): 32—36Xiao Q. , Wang Y. J. , Xiao M. X. , et al. , 2011. Effects of diaphragm on wind resistant design of power transmission towers. Journal of Northeast Dianli University, 31(S1): 32—36. (in Chinese) 谢强, 李杰, 2006. 电力系统自然灾害的现状与对策. 自然灾害学报, 15(4): 126—131Xie Q. , Li J. , 2006. Current situation of natural disaster in electric power system and counter measures. Journal of Natural Disasters, 15(4): 126—131. (in Chinese) 谢强, 丁兆东, 赵桂峰等, 2009. 不同横隔面配置方式的输电塔抗风动力响应分析. 高电压技术, 35(3): 683—688Xie Q. , Ding Z. D. , Zhao G. F. , et al. , 2009. Wind resistant analysis of power transmission tower with different diaphragm arrangements. High Voltage Engineering, 35(3): 683—688. (in Chinese) 谢强, 李继国, 严承涌等, 2013.1000 kV特高压输电塔线体系风荷载传递机制风洞试验研究. 中国电机工程学报, 33(1): 109—116Xie Q. , Li J. G. , Yan C. Y. , et al. , 2013. Wind tunnel test on wind load transferring mechanism in the 1000 kV UHV transmission tower-line system. Proceedings of the CSEE, 33(1): 109—116. (in Chinese) 杨文刚, 王璋奇, 朱伯文等, 2015. 特高压单柱拉线塔塔线体系风振响应时程分析. 中国电机工程学报, 35(12): 3182—3191Yang W. G. , Wang Z. Q. , Zhu B. W. , et al. , 2015. Time history analysis on wind-induced response of UHV guyed single-mast transmission tower-line system. Proceedings of the CSEE, 35(12): 3182—3191. (in Chinese) 张爱林, 陆瑶, 2010. 提高输电塔架承载力的预应力技术研究. 钢结构, 25(1): 10—14Zhang A. L. , Lu Y. , 2010. Study on pre-stressed technology for reinforcing bearing capacity of transmission towers. Steel Construction, 25(1): 10—14. (in Chinese) 张锋, 吴秋晗, 李继红, 2005. 台风“云娜”对浙江电网造成的危害与防范措施. 中国电力, 38(5): 39—42Zhang F. , Wu Q. H. , Li J. H. , 2005. Hazards of typhoon Rananim to Zhejiang power grid and its preventive measures. Electric Power, 38(5): 39—42. (in Chinese) 张若愚, 曹枚根, 毛宇等, 2020. 增设拉线对特高压直流复合避雷器地震响应的影响分析. 南方电网技术, 14(4): 31—38Zhang R. Y. , Cao M. G. , Mao Y. , et al. , 2020. Influence analysis of additional guy cable on the seismic response of UHVDC composite arrester. Southern Power System Technology, 14(4): 31—38. (in Chinese) 张戬, 杨正, 谢强, 2019. 输电塔T形组合角钢加固方法试验研究. 工业建筑, 49(4): 37—43Zhang J. , Yang Z. , Xie Q. , 2019. Experimental research on reinforcement method of transmission tower with T-Shaped combine angles. Industrial Construction, 49(4): 37—43. (in Chinese) 钟万里, 吴灌伦, 王伟等, 2013. 一种高压输电塔在风场中的失稳与加固. 中南大学学报(自然科学版), 44(2): 593—597Zhong W. L. , Wu G. L. , Wang W. , et al. , 2013. Instability and reinforcement of a type of transmission tower in wind field. Journal of Central South University (Natural Science Technology), 44(2): 593—597. (in Chinese) 朱云祥, 张若愚, 曹枚根等, 2022. 海岛大跨越输电塔线体系风振响应及风振系数. 高压电器, 58(1): 48—58Zhu Y. X. , Zhang R. Y. , Cao M. G. , et al. , 2022. Wind induced vibration response and coefficient of large crossing transmission tower line system between islands. High Voltage Apparatus, 58(1): 48—58. (in Chinese) Balendra T. , Wang C. M. , Cheong H. F. , 1995. Effectiveness of tuned liquid column dampers for vibration control of towers. Engineering Structures, 17(9): 668—675. doi: 10.1016/0141-0296(95)00036-7 Battista R. C. , Rodrigues R. S. , Pfeil M. S. , 2003. Dynamic behavior and stability of transmission line towers under wind forces. Journal of Wind Engineering and Industrial Aerodynamics, 91(8): 1051—1067. doi: 10.1016/S0167-6105(03)00052-7 Lu C. H., Ma X., Mills J. E., 2015 a. Structural performance of bolted connectors in retrofitted transmission tower leg members. In: Lynch O. J., ed., Electrical Transmission and Substation Structures 2015: Technical Challenges and Innovative Solutions in Grid Modernization. Branson: American Society of Civil Engineers, 489—499. Lu C. H. , Ma X. , Mills J. E. , 2015 b. Modeling of retrofitted steel transmission towers. Journal of Constructional Steel Research, 112: 138—154. doi: 10.1016/j.jcsr.2015.04.005 Luo H. , Zhang R. F. , Weng D. G. , 2016. Mitigation of liquid sloshing in storage tanks by using a hybrid control method. Soil Dynamics and Earthquake Engineering, 90: 183—95. doi: 10.1016/j.soildyn.2016.08.037 Zhang R. F. , Zhao Z. P. , Dai K. S. , 2019. Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system. Engineering Structures, 180: 29—39. doi: 10.1016/j.engstruct.2018.11.020 Zhao Z. P. , Zhang R. F. , Wierschem N. E. , et al. , 2020. Displacement mitigation-oriented design and mechanism for inerter-based isolation system. Journal of Vibration and Control, 27(17—18): 1991—2003.