Comparative Experimental Study on Dynamic Interaction of Piles-Soil-Steel and Piles-Soil-Concrete Structures
-
摘要: 为了分析不同上部结构-桩-土相互作用规律,分别进行了钢框架结构-桩-土模型和混凝土结构-桩-土模型的振动台试验,并对试验模型进行了相应的有限元数值模拟分析。试验采用三维叠层剪切模型箱,土体为均匀粉质黏土,钢结构和混凝土结构模型为简化的3层框架结构,桩基为3×3根群桩,桩径为10 cm,桩长为200 cm,输入为人工地震动时程,按时间相似比压缩1/5。振动台对比试验结果表明,相同几何尺寸的结构试验模型,混凝土结构的整体刚度大于钢结构,因此振动频率大于钢结构;相同地震作用下,钢框架结构模型加速度反应明显大于混凝土结构,桩身加速度放大系数前者为后者1.15~1.2倍,上部结构可达2倍,钢框架结构模型反应谱的卓越周期更长。有限元数值模拟的结果定性地验证了试验结果的合理性。Abstract: To analyze the laws of different superstructure interaction of piles-soil, the shaking table comparative tests of piles-soil steel frame structure model and piles-soil concrete structure model were carried out respectively, and the corresponding finite element numerical simulation analysis of the test models was carried out. The three-dimensional laminated shear model container is used in the test, in which the soil is uniform silty clay, the steel structure and concrete structure model are simplified three-layer frame structures, the pile foundation is 3×3 pile groups, the pile diameter is 10 cm, and the pile length is 200 cm. The input is the artificial ground motion time history, which is compressed by one-fifth according to the time similarity ratio. The results of shaking table comparison test show that the overall stiffness of concrete structure is higher than that of steel structure for the same geometric dimensions structure test model, so the vibration frequency is higher than that of steel structure. Under the same earthquake action, the acceleration response of steel frame structure model is obviously greater than that of concrete structure, and the predominant period of steel frame structure model response spectrum is relatively longer. To be specific, the acceleration amplification factor of the pile shaft in the former is 1.15-1.2 times of the latter, and that of the superstructure can reach as high as 2 times. The results of finite element numerical simulation qualitatively verify the rationality of the test results.
-
表 1 土体参数
Table 1. Soil parameters
结构模型 深度/m 土样密度/(g·cm−3) 最大动剪切模量/MPa 剪切波速/(m·s−1) 钢框架模型 2.15 1.80 81.664 212.9 混凝土模型 2.30 1.80 81.664 212.9 表 2 结构模型振动特性
Table 2. Measurement of vibration characteristics of model structure by white noise method
结构模型 长轴方向频率/Hz 短轴方向频率/Hz 阻尼比/% 混凝土模型 20.67 17.75 5.57 钢结构模型 4.95 5.73 5.80 表 3 上部结构自振周期
Table 3. Natural vibration period of superstructure
结构模型 1阶/Hz 2阶/Hz 3阶/Hz 混凝土模型 16.175 19.379 26.016 钢结构模型 5.161 5.248 9.118 表 4 均方根加速度放大系数对比
Table 4. Amplification factor of root mean square acceleration
测点位置 0.05 g工况 0.1 g工况 钢框架结构 混凝土结构 钢框架结构 混凝土结构 试验 计算 试验 计算 试验 计算 试验 计算 S4 6.268 5.596 2.692 2.639 5.940 5.702 2.424 2.640 S3 4.663 3.846 2.027 2.012 4.406 3.917 1.829 2.013 S2 3.011 2.507 1.660 1.455 2.810 2.528 1.514 1.456 Z5 1.489 1.295 1.276 1.231 1.317 1.295 1.167 1.232 Z4 1.306 1.204 1.097 1.168 1.200 1.205 1.019 1.169 Z3 1.276 1.121 1.143 1.099 1.249 1.121 1.075 1.099 Z2 1.209 1.038 1.156 1.031 1.175 1.038 1.095 1.031 Z1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -
黄炳生, 2000. 日本神户地震中建筑钢结构的震害及启示. 建筑结构, 30(9): 24—25. 景立平, 汪刚, 李嘉瑞等, 2022. 土–桩基–核岛体系动力相互作用振动台试验及数值模拟. 岩土工程学报, 44(1): 163—172 doi: 10.11779/CJGE202201016Jing L. P. , Wang G. , Li J. R. , et al. , 2022. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system. Chinese Journal of Geotechnical Engineering, 44(1): 163—172. (in Chinese) doi: 10.11779/CJGE202201016 李国强, 赵欣, 孙飞飞等, 2003. 钢结构住宅体系墙板及墙板节点足尺模型振动台试验研究. 地震工程与工程振动, 23(1): 64—70 doi: 10.3969/j.issn.1000-1301.2003.01.011Li G. Q. , Zhao X. , Sun F. F. , et al. , 2003. Shaking table study on a full scale model of wall panels and their connections of steel frame residential building systems. Earthquake Engineering and Engineering Vibration, 23(1): 64—70. (in Chinese) doi: 10.3969/j.issn.1000-1301.2003.01.011 李嘉瑞, 景立平, 董瑞等, 2020. ABAQUS模拟土-结构相互作用时人工边界的选取. 地震工程与工程振动, 40(3): 174—182Li J. R. , Jing L. P. , Dong R. , et al. , 2020. Artificial boundary selection when calculating soil-structure interaction with abaqus. Earthquake Engineering and Engineering Vibration, 40(3): 174—182. (in Chinese) 楼梦麟, 宗刚, 牛伟星等, 2006. 土-桩-钢结构相互作用体系的振动台模型试验. 地震工程与工程振动, 26(5): 226—230 doi: 10.3969/j.issn.1000-1301.2006.05.037Lou M. L. , Zong G. , Niu W. X. , et al. , 2006. Shaking table model test of soil-pile-steel structure interaction system. Earthquake Engineering and Engineering Vibration, 26(5): 226—230. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.05.037 吕西林, 张杰, 卢文胜, 2011. 钢-混凝土竖向混合框架结构抗震性能试验研究. 建筑结构学报, 32(9): 20—26Lv X. L. , Zhang J. , Lu W. S. , 2011. Seismic behavior of vertically mixed structures with upper steel and lower concrete components. Journal of Building Structures, 32(9): 20—26. (in Chinese) 孙柏涛, 姜琪, 闫培雷, 2018. 基于小比例缩尺模型结构试验的小型钢架反力墙优化设计与力学性能分析. 震灾防御技术, 13(4): 869—877 doi: 10.11899/zzfy20180414Sun B. T. , Jiang Q. , Yan P. L. , 2018. Optimization design and mechanical property analysis of small steel frame reaction-wall based on large scale model structure test. Technology for Earthquake Disaster Prevention, 13(4): 869—877. (in Chinese) doi: 10.11899/zzfy20180414 汪刚, 景立平, 王友刚等, 2022. 土性对土–桩–核岛结构动力相互作用影响的试验研究. 岩石力学与工程学报, 41(11): 2353—2364Wang G. , Jing L. P. , Wang Y. G. , et al. , 2022. Experimental study on the influence of soil properties on seismic-soil-pilenuclear island structure interaction. Chinese Journal of Rock Mechanics and Engineering, 41(11): 2353—2364. (in Chinese) 王玉铃, 权登州, 柴少波等, 2021. 黄土场地地铁车站振动台试验方案设计与研究. 震灾防御技术, 16(1): 176—185 doi: 10.11899/zzfy20210118Wang Y. L. , Quan D. Z. , Chai S. B. , et al. , 2021. Study on the test scheme of shaking table test for subway station built in loess area. Technology for Earthquake Disaster Prevention, 16(1): 176—185. (in Chinese) doi: 10.11899/zzfy20210118 肖晓春, 林皋, 迟世春, 2002. 桩-土-结构动力相互作用的分析模型与方法. 世界地震工程, 18(4): 123—130 doi: 10.3969/j.issn.1007-6069.2002.04.022Xiao X. C. , Lin G. , Chi S. C. , 2002. Analysis model and methods of pile-soil-structure dynamic interaction. World Earthquake Engineering, 18(4): 123—130. (in Chinese) doi: 10.3969/j.issn.1007-6069.2002.04.022 熊建国, 1992. 土-结构动力相互作用问题的新进展(Ⅰ). 世界地震工程, (3): 22—29. 许成顺, 豆鹏飞, 杜修力等, 2022. 非液化土-群桩基础-结构体系相互作用动力响应振动台试验研究[J]. 建筑结构学报, 43(5): 185—194, 204Xu C. S. , Dou P. F. , Du X. L. , et al. , 2022. Dynamic interaction and seismic response of non-liquefiable soil-pile group foundation-structure system from Shaking table test[J]. Journal of Building Structures, 43(5): 185—194, 204. (in Chinese) 杨巧荣, 陈建秋, 刘文光等, 2003. 某全钢结构地震模拟振动台试验和理论研究. 世界地震工程, 19(3): 97—103 doi: 10.3969/j.issn.1007-6069.2003.03.018Yang Q. R. , Chen J. Q. , Liu W. G. , et al. , 2003. Shaking table test and theoretic research on steel structural model. World Earthquake Engineering, 19(3): 97—103. (in Chinese) doi: 10.3969/j.issn.1007-6069.2003.03.018 张克绪, 谢君斐, 陈国兴, 1991. 桩的震害及其破坏机制宏观研究. 世界地震工程, (2): 7—20. Bai Y. T. , Shi Y. D. , Deng K. L. , 2016. Collapse analysis of high-rise steel moment frames incorporating deterioration effects of column axial force-bending moment interaction. Engineering Structures, 127: 402—415. doi: 10.1016/j.engstruct.2016.09.005 Fatahi B., Tabatabaiefar H. R., Samali B., 2017. Performance based assessment of dynamic soil-structure interaction effects on seismic response of building frames. In: GeoRisk 2011. New York: American Society of Civil Engineers, 344—351. Guin J. , Banerjee P. K. , 1998. Coupled soil-pile-structure interaction analysis under seismic excitation. Journal of Structural Engineering, 124(4): 434—444. doi: 10.1061/(ASCE)0733-9445(1998)124:4(434) Kampitsis A. E. , Giannakos S. , Gerolymos N. , et al. , 2015. Soil-pile interaction considering structural yielding: Numerical modeling and experimental validation. Engineering Structures, 99: 319—333. doi: 10.1016/j.engstruct.2015.05.004 Wong H. L. , Luco J. E. , 1991. Structural control including soil-structure interaction effects. Journal of Engineering Mechanics, 117(10): 2237—2250. doi: 10.1061/(ASCE)0733-9399(1991)117:10(2237)