• ISSN 1673-5722
  • CN 11-5429/P

桩-土-钢、砼结构动力相互作用试验对比研究

余佳科 景立平 王展 陆新宇 齐文浩

余佳科,景立平,王展,陆新宇,齐文浩,2024. 桩-土-钢、砼结构动力相互作用试验对比研究. 震灾防御技术,19(1):151−159. doi:10.11899/zzfy20240115. doi: 10.11899/zzfy20240115
引用本文: 余佳科,景立平,王展,陆新宇,齐文浩,2024. 桩-土-钢、砼结构动力相互作用试验对比研究. 震灾防御技术,19(1):151−159. doi:10.11899/zzfy20240115. doi: 10.11899/zzfy20240115
Yu Jiake, Jing Liping, Wang Zhan, Lu Xinyu, Qi Wenhao. Comparative Experimental Study on Dynamic Interaction of Piles-Soil-Steel and Piles-Soil-Concrete Structures[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 151-159. doi: 10.11899/zzfy20240115
Citation: Yu Jiake, Jing Liping, Wang Zhan, Lu Xinyu, Qi Wenhao. Comparative Experimental Study on Dynamic Interaction of Piles-Soil-Steel and Piles-Soil-Concrete Structures[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 151-159. doi: 10.11899/zzfy20240115

桩-土-钢、砼结构动力相互作用试验对比研究

doi: 10.11899/zzfy20240115
基金项目: 中国地震局工程力学研究所基本科研业务费专项(2019B10)
详细信息
    作者简介:

    余佳科,男,生于1997年。硕士研究生。主要从事桩-土-结构相互作用方面研究。E-mail:928665173@qq.com

    通讯作者:

    景立平,男,生于1963年。博士,研究员。主要从事岩土工程和工程地震方面的研究。E-mail:jing_liping@126.com

Comparative Experimental Study on Dynamic Interaction of Piles-Soil-Steel and Piles-Soil-Concrete Structures

  • 摘要: 为了分析不同上部结构-桩-土相互作用规律,分别进行了钢框架结构-桩-土模型和混凝土结构-桩-土模型的振动台试验,并对试验模型进行了相应的有限元数值模拟分析。试验采用三维叠层剪切模型箱,土体为均匀粉质黏土,钢结构和混凝土结构模型为简化的3层框架结构,桩基为3×3根群桩,桩径为10 cm,桩长为200 cm,输入为人工地震动时程,按时间相似比压缩1/5。振动台对比试验结果表明,相同几何尺寸的结构试验模型,混凝土结构的整体刚度大于钢结构,因此振动频率大于钢结构;相同地震作用下,钢框架结构模型加速度反应明显大于混凝土结构,桩身加速度放大系数前者为后者1.15~1.2倍,上部结构可达2倍,钢框架结构模型反应谱的卓越周期更长。有限元数值模拟的结果定性地验证了试验结果的合理性。
  • 图  1  结构模型

    Figure  1.  Structure model

    图  2  压缩1/5的人工地震动时程与反应谱

    Figure  2.  Compressed 1/5 earthquake motion time history and response spectrum

    图  3  数值模拟模型

    Figure  3.  Numerical simulation model

    图  4  不同输入幅值下结构3、4层实测加速度反应谱

    Figure  4.  Response spectra with different input amplitudes

    图  5  压缩1/5的天然地震动时程与反应谱

    Figure  5.  Compressed 1/5 earthquake motion time history and response spectrum

    图  6  各工况加速度反应谱对比

    Figure  6.  Comparison of acceleration response spectrum of working conditions

    图  7  桩身内力分布图

    Figure  7.  Internal force distribution of pile shaft

    图  8  桩顶位移时程

    Figure  8.  Time history of pile top displacement

    图  9  桩身相对变形

    Figure  9.  Relative deformation of pile shaft

    图  10  上部结构相对位移

    Figure  10.  Relative displacement of superstructure

    表  1  土体参数

    Table  1.   Soil parameters

    结构模型深度/m土样密度/(g·cm−3最大动剪切模量/MPa剪切波速/(m·s−1
    钢框架模型2.151.8081.664212.9
    混凝土模型2.301.8081.664212.9
    下载: 导出CSV

    表  2  结构模型振动特性

    Table  2.   Measurement of vibration characteristics of model structure by white noise method

    结构模型长轴方向频率/Hz短轴方向频率/Hz阻尼比/%
    混凝土模型20.6717.755.57
    钢结构模型4.955.735.80
    下载: 导出CSV

    表  3  上部结构自振周期

    Table  3.   Natural vibration period of superstructure

    结构模型1阶/Hz2阶/Hz3阶/Hz
    混凝土模型16.17519.37926.016
    钢结构模型5.1615.2489.118
    下载: 导出CSV

    表  4  均方根加速度放大系数对比

    Table  4.   Amplification factor of root mean square acceleration

    测点位置0.05 g工况0.1 g工况
    钢框架结构混凝土结构钢框架结构混凝土结构
    试验计算试验计算试验计算试验计算
    S46.2685.5962.6922.6395.9405.7022.4242.640
    S34.6633.8462.0272.0124.4063.9171.8292.013
    S23.0112.5071.6601.4552.8102.5281.5141.456
    Z51.4891.2951.2761.2311.3171.2951.1671.232
    Z41.3061.2041.0971.1681.2001.2051.0191.169
    Z31.2761.1211.1431.0991.2491.1211.0751.099
    Z21.2091.0381.1561.0311.1751.0381.0951.031
    Z11.0001.0001.0001.0001.0001.0001.0001.000
    下载: 导出CSV
  • 黄炳生, 2000. 日本神户地震中建筑钢结构的震害及启示. 建筑结构, 30(9): 24—25.
    景立平, 汪刚, 李嘉瑞等, 2022. 土–桩基–核岛体系动力相互作用振动台试验及数值模拟. 岩土工程学报, 44(1): 163—172 doi: 10.11779/CJGE202201016

    Jing L. P. , Wang G. , Li J. R. , et al. , 2022. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system. Chinese Journal of Geotechnical Engineering, 44(1): 163—172. (in Chinese) doi: 10.11779/CJGE202201016
    李国强, 赵欣, 孙飞飞等, 2003. 钢结构住宅体系墙板及墙板节点足尺模型振动台试验研究. 地震工程与工程振动, 23(1): 64—70 doi: 10.3969/j.issn.1000-1301.2003.01.011

    Li G. Q. , Zhao X. , Sun F. F. , et al. , 2003. Shaking table study on a full scale model of wall panels and their connections of steel frame residential building systems. Earthquake Engineering and Engineering Vibration, 23(1): 64—70. (in Chinese) doi: 10.3969/j.issn.1000-1301.2003.01.011
    李嘉瑞, 景立平, 董瑞等, 2020. ABAQUS模拟土-结构相互作用时人工边界的选取. 地震工程与工程振动, 40(3): 174—182

    Li J. R. , Jing L. P. , Dong R. , et al. , 2020. Artificial boundary selection when calculating soil-structure interaction with abaqus. Earthquake Engineering and Engineering Vibration, 40(3): 174—182. (in Chinese)
    楼梦麟, 宗刚, 牛伟星等, 2006. 土-桩-钢结构相互作用体系的振动台模型试验. 地震工程与工程振动, 26(5): 226—230 doi: 10.3969/j.issn.1000-1301.2006.05.037

    Lou M. L. , Zong G. , Niu W. X. , et al. , 2006. Shaking table model test of soil-pile-steel structure interaction system. Earthquake Engineering and Engineering Vibration, 26(5): 226—230. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.05.037
    吕西林, 张杰, 卢文胜, 2011. 钢-混凝土竖向混合框架结构抗震性能试验研究. 建筑结构学报, 32(9): 20—26

    Lv X. L. , Zhang J. , Lu W. S. , 2011. Seismic behavior of vertically mixed structures with upper steel and lower concrete components. Journal of Building Structures, 32(9): 20—26. (in Chinese)
    孙柏涛, 姜琪, 闫培雷, 2018. 基于小比例缩尺模型结构试验的小型钢架反力墙优化设计与力学性能分析. 震灾防御技术, 13(4): 869—877 doi: 10.11899/zzfy20180414

    Sun B. T. , Jiang Q. , Yan P. L. , 2018. Optimization design and mechanical property analysis of small steel frame reaction-wall based on large scale model structure test. Technology for Earthquake Disaster Prevention, 13(4): 869—877. (in Chinese) doi: 10.11899/zzfy20180414
    汪刚, 景立平, 王友刚等, 2022. 土性对土–桩–核岛结构动力相互作用影响的试验研究. 岩石力学与工程学报, 41(11): 2353—2364

    Wang G. , Jing L. P. , Wang Y. G. , et al. , 2022. Experimental study on the influence of soil properties on seismic-soil-pilenuclear island structure interaction. Chinese Journal of Rock Mechanics and Engineering, 41(11): 2353—2364. (in Chinese)
    王玉铃, 权登州, 柴少波等, 2021. 黄土场地地铁车站振动台试验方案设计与研究. 震灾防御技术, 16(1): 176—185 doi: 10.11899/zzfy20210118

    Wang Y. L. , Quan D. Z. , Chai S. B. , et al. , 2021. Study on the test scheme of shaking table test for subway station built in loess area. Technology for Earthquake Disaster Prevention, 16(1): 176—185. (in Chinese) doi: 10.11899/zzfy20210118
    肖晓春, 林皋, 迟世春, 2002. 桩-土-结构动力相互作用的分析模型与方法. 世界地震工程, 18(4): 123—130 doi: 10.3969/j.issn.1007-6069.2002.04.022

    Xiao X. C. , Lin G. , Chi S. C. , 2002. Analysis model and methods of pile-soil-structure dynamic interaction. World Earthquake Engineering, 18(4): 123—130. (in Chinese) doi: 10.3969/j.issn.1007-6069.2002.04.022
    熊建国, 1992. 土-结构动力相互作用问题的新进展(Ⅰ). 世界地震工程, (3): 22—29.
    许成顺, 豆鹏飞, 杜修力等, 2022. 非液化土-群桩基础-结构体系相互作用动力响应振动台试验研究[J]. 建筑结构学报, 43(5): 185—194, 204

    Xu C. S. , Dou P. F. , Du X. L. , et al. , 2022. Dynamic interaction and seismic response of non-liquefiable soil-pile group foundation-structure system from Shaking table test[J]. Journal of Building Structures, 43(5): 185—194, 204. (in Chinese)
    杨巧荣, 陈建秋, 刘文光等, 2003. 某全钢结构地震模拟振动台试验和理论研究. 世界地震工程, 19(3): 97—103 doi: 10.3969/j.issn.1007-6069.2003.03.018

    Yang Q. R. , Chen J. Q. , Liu W. G. , et al. , 2003. Shaking table test and theoretic research on steel structural model. World Earthquake Engineering, 19(3): 97—103. (in Chinese) doi: 10.3969/j.issn.1007-6069.2003.03.018
    张克绪, 谢君斐, 陈国兴, 1991. 桩的震害及其破坏机制宏观研究. 世界地震工程, (2): 7—20.
    Bai Y. T. , Shi Y. D. , Deng K. L. , 2016. Collapse analysis of high-rise steel moment frames incorporating deterioration effects of column axial force-bending moment interaction. Engineering Structures, 127: 402—415. doi: 10.1016/j.engstruct.2016.09.005
    Fatahi B., Tabatabaiefar H. R., Samali B., 2017. Performance based assessment of dynamic soil-structure interaction effects on seismic response of building frames. In: GeoRisk 2011. New York: American Society of Civil Engineers, 344—351.
    Guin J. , Banerjee P. K. , 1998. Coupled soil-pile-structure interaction analysis under seismic excitation. Journal of Structural Engineering, 124(4): 434—444. doi: 10.1061/(ASCE)0733-9445(1998)124:4(434)
    Kampitsis A. E. , Giannakos S. , Gerolymos N. , et al. , 2015. Soil-pile interaction considering structural yielding: Numerical modeling and experimental validation. Engineering Structures, 99: 319—333. doi: 10.1016/j.engstruct.2015.05.004
    Wong H. L. , Luco J. E. , 1991. Structural control including soil-structure interaction effects. Journal of Engineering Mechanics, 117(10): 2237—2250. doi: 10.1061/(ASCE)0733-9399(1991)117:10(2237)
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  11
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-17
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回