• ISSN 1673-5722
  • CN 11-5429/P

考虑断层破碎带影响的隧道结构地震反应研究

董捷 郑英豪 李兆琦 陈洪运 宫凤梧 闫鑫 刘洋

董捷,郑英豪,李兆琦,陈洪运,宫凤梧,闫鑫,刘洋,2024. 考虑断层破碎带影响的隧道结构地震反应研究. 震灾防御技术,19(1):140−150. doi:10.11899/zzfy20240114. doi: 10.11899/zzfy20240114
引用本文: 董捷,郑英豪,李兆琦,陈洪运,宫凤梧,闫鑫,刘洋,2024. 考虑断层破碎带影响的隧道结构地震反应研究. 震灾防御技术,19(1):140−150. doi:10.11899/zzfy20240114. doi: 10.11899/zzfy20240114
Dong Jie, Zheng Yinghao, Li Zhaoqi, Chen Hongyun, Gong Fengwu, Yan Xin, Liu Yang. Seismic Response of Cross-fault Tunnel Based on Fluid-structure Interaction[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 140-150. doi: 10.11899/zzfy20240114
Citation: Dong Jie, Zheng Yinghao, Li Zhaoqi, Chen Hongyun, Gong Fengwu, Yan Xin, Liu Yang. Seismic Response of Cross-fault Tunnel Based on Fluid-structure Interaction[J]. Technology for Earthquake Disaster Prevention, 2024, 19(1): 140-150. doi: 10.11899/zzfy20240114

考虑断层破碎带影响的隧道结构地震反应研究

doi: 10.11899/zzfy20240114
基金项目: 国家自然科学基金项目(51878242);河北省自然科学基金(E2020404007);河北省住房和城乡建设厅建设科技研究项目(2022-2106);河北省教育厅在读研究生创新能力培养资助项目(CXZZSS2022063);张家口市基础研究和人才培养计划项目(2221016A)
详细信息
    作者简介:

    董捷,男,生于1980年。博士后,教授,研究生导师。主要从事岩土及隧道工程研究。E-mail:dongjie1003@hotmail.com

    通讯作者:

    郑英豪,男,生于1996年。硕士研究生。主要从事桥梁与隧道工程研究。E-mail:282009668@qq.com

Seismic Response of Cross-fault Tunnel Based on Fluid-structure Interaction

  • 摘要: 为研究跨断层隧道在渗流-地震耦合作用下的动力响应,以宣绩铁路周湾村隧道穿越富水断层为背景,基于Biot固结动力方程,采用有限差分软件FLAC 3D进行多场耦合数值计算。本文主要分析了断层破碎带宽度对隧道衬砌特征点加速度、孔压、位移及应力响应规律的影响。研究结果表明,对隧道结构不同位置而言,加速度响应规律一致,均为正常段加速度<破碎带加速度<交界面加速度。耦合场作用下,地层与破碎带交界处围岩位移及应力均发生突变。随着断层宽度的增加,应力及位移突变范围有所增大,孔隙水压力峰值也进一步扩大。此时隧道受压区增大,衬砌结构易发生局部破坏。通过加设注浆层的方式,可有效减少耦合场作用引起的拱圈应力分布不均现象。
  • 图  1  隧道纵坡面图

    Figure  1.  Tunnel longitudinal slope plan

    图  2  数值计算模型

    Figure  2.  Numerical computation model

    图  3  El Centro地震波

    Figure  3.  El Centro seismic waves

    图  4  衬砌各特征点x向加速度时程曲线

    Figure  4.  Time-history curve of acceleration of each characteristic point of lining in x direction

    图  5  不同位置处特征点孔压时程曲线

    Figure  5.  Pore pressure time history curves of characteristic points at different positions

    图  6  不同断层宽度下孔隙水压力云图

    Figure  6.  Cloud map of pore water pressure under different fault widths

    图  7  不同断层破碎带宽度下x方向位移云图

    Figure  7.  Displacement clouds in x direction for different fault fragmentation zone widths

    图  8  不同断层破碎带宽度下z方向位移云图

    Figure  8.  Displacement clouds in z direction for different fault fragmentation zone widths

    图  9  拱腰特征点水平位移时程曲线

    Figure  9.  Horizontal displacement time-history curve of arch waist feature point

    图  10  拱顶特征点竖向位移时程曲线

    Figure  10.  Vertical displacement time-history curve of the characteristic point of the vault

    图  11  特征点最大主应力纵向分布规律

    Figure  11.  Longitudinal distribution law of maximum principal stress at characteristic points

    图  12  不同断层宽度下隧道各特征点最大主应力峰值

    Figure  12.  Peak principal stress at each characteristic point of the tunnel under different fault thicknesses

    表  1  模型材料参数

    Table  1.   Material parameters of the model

    介质密度/(kg·m−3弹性模量/GPa内摩擦角/(°)黏聚力/MPa泊松比 μ渗透系数/(m·s−1
    砂岩20001.3270.200.353.0×10−6
    初期支护230028.00.30
    注浆层20003.0330.250.406.0×10−8
    断层17000.8220.150.401.5×10−5
    下载: 导出CSV

    表  2  接触面参数取值

    Table  2.   Values for contact surface parameters

    名称法向刚度 $ {k_{\rm{n}}} $/(N·m−3切向刚度 $ {k_{\rm{s}}} $/(N·m−3黏聚力 c/kPa内摩擦角$ \varphi $/(°)
    接触面参数1091095017
    下载: 导出CSV

    表  3  隧道各特征点水平位移峰值

    Table  3.   Peak value of horizontal displacement of each characteristic point of the tunnel

    破碎带宽度/m水平位移峰值/mm
    拱顶拱肩拱腰拱脚拱底
    1046.946.845.043.543.3
    2046.646.645.043.442.6
    3046.346.444.943.443.0
    4046.046.044.643.142.8
    下载: 导出CSV
  • 班改革, 2020. 流固耦合作用下隧道开挖模拟研究. 现代交通技术, 17(2): 33—37 doi: 10.3969/j.issn.1672-9889.2020.02.007

    Ban G. G. , 2020. Study of tunnel excavation simulation under fluid-structure coupling action. Modern Transportation Technology, 17(2): 33—37. (in Chinese) doi: 10.3969/j.issn.1672-9889.2020.02.007
    陈育民, 徐鼎平, 2009. FLAC/FLAC3D基础与工程实例. 北京: 中国水利水电出版社.
    陈育民, 徐鼎平, 2013. FLAC/FLAC3D基础与工程实例. 2版. 北京: 中国水利水电出版社.
    程选生, 王建华, 杜修力, 2013. 渗流作用下海底隧道的流-固耦合地震响应分析. 现代隧道技术, 50(6): 44—51 doi: 10.3969/j.issn.1009-6582.2013.06.008

    Cheng X. S. , Wang J. H. , Du X. L. , 2013. Fluid-solid coupling based seismic response analysis of subsea tunnels during seepage. Modern Tunnelling Technology, 50(6): 44—51. (in Chinese) doi: 10.3969/j.issn.1009-6582.2013.06.008
    程选生, 俞东江, 刘博等, 2016. 渗流和双向地震下跨海减震隧道的稳定分析. 铁道科学与工程学报, 13(5): 882—890 doi: 10.3969/j.issn.1672-7029.2016.05.014

    Cheng X. S. , Yu D. J. , Liu B. , et al. , 2016. Stability analysis of cross sea tunnel with shock absorption subjected to seepage and bi-directional earthquake. Journal of Railway Science and Engineering, 13(5): 882—890. (in Chinese) doi: 10.3969/j.issn.1672-7029.2016.05.014
    邓洋, 2021. 地震作用下含地下水边坡动力响应耦合分析. 路基工程, (5): 180—185

    Deng Y. , 2021. Analysis on dynamic response coupling of slope with groundwater under earthquake. Subgrade Engineering, (5): 180—185. (in Chinese)
    何川, 李林, 张景, 等, 2014. 隧道穿越断层破碎带震害机理研究. 岩土工程学报, 36(3): 427—434 doi: 10.11779/CJGE201403004

    He C. , Li L. , Zhang J. , et al. , 2014. Seismic damage mechanism of tunnels through fault zones. Chinese Journal of Geotechnical Engineering, 36(3): 427—434. (in Chinese) doi: 10.11779/CJGE201403004
    李亮, 吴利华, 王相宝等, 2016. 基于流固耦合动力模型的饱和土体-隧道体系地震反应研究. 地震工程学报, 38(6): 862—868

    Li L. , Wu L. H. , Wang X. B. , et al. , 2016. Seismic response of saturated soil-tunnel system based on fluid-solid coupling dynamic model. China Earthquake Engineering Journal, 38(6): 862—868. (in Chinese)
    李廷春, 吕连勋, 刘建章等, 2016. 基于隧道与断层破碎带距离因素的震害规律分析. 现代隧道技术, 53(1): 52—61

    Li T. C. , Lv L. X. , Liu J. Z. , et al. , 2016. Analysis of the seismic damage rule based on the distance between the tunnel and the fractured fault zone. Modern Tunnelling Technology, 53(1): 52—61. (in Chinese)
    李旭伟, 苏天宝, 2014. 高烈度区黄草坪山岭隧道地震动破坏机理研究. 施工技术, 43(10): 127—130

    Li X. W. , Su T. B. , 2014. Research on the failure mechanism of Huangcaoping mountain tunnel in high intensity zone subjected to earthquake. Construction Technology, 43(10): 127—130. (in Chinese)
    梁波, 杨仕恒, 赵冯兵, 等, 2020. 特大断面隧道断层段地震响应与断层构造关系. 科学技术与工程, 20(34): 14272—14277 doi: 10.3969/j.issn.1671-1815.2020.34.047

    Liang B. , Yang S. H. , Zhao F. B. , et al. , 2020. The relationship between seismic response and fault structure in fault section of extra-large section tunnel. Science Technology and Engineering, 20(34): 14272—14277. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.34.047
    刘积魁, 方云, 刘智等, 2011. 钓鱼城遗址始关门破坏机制研究与FLAC3 D地震动力响应模拟. 岩土力学, 32(4): 1249—1254 doi: 10.3969/j.issn.1000-7598.2011.04.049

    Liu J. K. , Fang Y. , Liu Z. , et al. , 2011. Study of damage mechanism and FLAC3 D simulation of the seismic dynamic response of Shiguan gate in Diaoyucheng ruins. Rock and Soil Mechanics, 32(4): 1249—1254. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.04.049
    刘子阳, 曹小平, 严松宏等, 2019. 棋盘石隧道断裂破碎带地震动力响应分析. 世界地震工程, 35(3): 161—167

    Liu Z. Y. , Cao X. P. , Yan S. H. , et al. , 2019. Seismic dynamic response analysis of fault fracture zone in Qipanshi Tunnel. World Earthquake Engineering, 35(3): 161—167. (in Chinese)
    彭文斌, 2008. FLAC 3D实用教程. 北京: 机械工业出版社.
    苏建锋, 2017. 基于FLAC3 D的土层非线性地震反应分析. 地震工程学报, 39(5): 883—889 doi: 10.3969/j.issn.1000-0844.2017.05.0883

    Su J. F. , 2017. Nonlinear seismic response analysis of soil layers based on FLAC3 D. China Earthquake Engineering Journal, 39(5): 883—889. (in Chinese) doi: 10.3969/j.issn.1000-0844.2017.05.0883
    王涛, 2015. FLAC3D数值模拟方法及工程应用-深入剖析FLAC3D 5.0. 北京: 中国建筑工业出版社.
    颉永斌, 董建华, 2021. 断层破碎带内隧道纵向受荷特征和变形分析. 中国公路学报, 34(11): 211—224 doi: 10.3969/j.issn.1001-7372.2021.11.017

    Xie Y. B. , Dong J. H. , 2021. Analysis of longitudinal deformation and stress characteristics of tunnel crossing fault fracture zone. China Journal of Highway and Transport, 34(11): 211—224. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.11.017
    杨步云, 陈俊涛, 肖明, 2020. 跨断层地下隧洞衬砌结构地震响应及损伤机理研究. 岩土工程学报, 42(11): 2078—2087 doi: 10.11779/CJGE202011013

    Yang B. Y. , Chen J. T. , Xiao M. , 2020. Seismic response and damage mechanism of lining structures for underground tunnels across fault. Chinese Journal of Geotechnical Engineering, 42(11): 2078—2087. (in Chinese) doi: 10.11779/CJGE202011013
    杨涛, 张杰, 林海飞等, 2021. 隔水土层孔隙水压畸变与顶板突水灾变的时空响应特征模拟研究. 采矿与安全工程学报, 38(2): 317—325

    Yang T. , Zhang J. , Lin H. F. , et al. , 2021. Spatial-temporal characteristics simulation of pore water pressure in aquiclude and roof water inrush. Journal of Mining & Safety Engineering, 38(2): 317—325. (in Chinese)
    禹海涛, 陈功, 2021. 深部富水岩石拱形隧道地震响应解析解. 中南大学学报(自然科学版), 52(8): 2783—2792 doi: 10.11817/j.issn.1672-7207.2021.08.024

    Yu H. T. , Chen G. , 2021. Analytical solution for seismic response of deep arch tunnels in saturated rock. Journal of Central South University (Science and Technology), 52(8): 2783—2792. (in Chinese) doi: 10.11817/j.issn.1672-7207.2021.08.024
    臧万军, 2017. 汶川地震公路隧道震害规律研究. 现代隧道技术, 54(2): 17—25

    Zang W. J. , 2017. Damage to highway tunnels caused by the Wenchuan earthquake. Modern Tunnelling Technology, 54(2): 17—25. (in Chinese)
    张海东, 2018. 断层破碎带宽度对逆断层活化规律影响的模拟研究[J]. 煤炭工程, 50(1): 96—99, 104 doi: 10.11799/ce201801027

    Zhang H. D. , 2018. Simulation study on the influence of fault zone width on reverse fault activation law. Coal Engineering, 50(1): 96—99, 104. (in Chinese) doi: 10.11799/ce201801027
    周佳媚, 程毅, 邹仕伟等, 2019. 断层错动及地震作用下隧道力学特性研究. 铁道标准设计, 63(11): 138—144

    Zhou J. M. , Cheng Y. , Zou. S. W. , et al. , 2019. Research on mechanical characteristics of tunnel under fault movement and seismic. Railway Standard Design, 63(11): 138—144. (in Chinese)
    朱长安, 李海清, 林国进等, 2012. 断层破碎带隧道地震反应规律的数值模拟研究. 公路, 57(4): 254—259 doi: 10.3969/j.issn.0451-0712.2012.04.054

    Zhu C. A. , Li H. Q. , Lin G. J. , et al. , 2012. A study on numerical simulation of seismic response of tunnel in fault-rupture zone. Highway, 57(4): 254—259. (in Chinese) doi: 10.3969/j.issn.0451-0712.2012.04.054
    Mao Z. J. , Wang X. K. , An N. , et al. , 2020. Water leakage susceptible areas in loess multi-arch tunnel operation under the lateral recharge conditions. Environmental Earth Sciences, 79(15): 368. doi: 10.1007/s12665-020-09083-3
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  33
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 刊出日期:  2024-03-31

目录

    /

    返回文章
    返回