Ground Motion Characteristics of Horizontal Layered Site Based on SH Wave Oblique Incidence
-
摘要: 基于位移场理论和传递矩阵法,建立SH波斜入射下水平成层场地非线性地震反应等效线性化求解方法,研究SH波不同角度入射下场地地表峰值加速度放大系数及反应谱谱比变化规律。研究结果表明,地震波入射角度对场地地表峰值加速度影响明显,在大多数情况下,地震波斜入射下地表峰值加速度大于垂直入射;地震波斜入射下反应谱特性变化明显,入射角度对高频段反应谱的放大效应显著,且入射角度对不同类型场地的影响周期范围不同,入射角度对Ⅲ类场地周期影响范围明显宽于Ⅱ类场地。Abstract: Based on the displacement field theory and transfer matrix method, this paper deduces the equivalent linearization method of layered site under oblique incidence of SH waves, and studies the variation law of peak acceleration magnification and response spectrum ratio of horizontal layered site under different angles of SH waves. The results show that the incident angle of seismic waves has obvious influence on the peak acceleration of the ground surface of layered sites. In many cases, the peak acceleration of the ground surface under oblique incidence of seismic waves is greater than that under vertical incidence. The response spectrum characteristics change obviously under oblique incidence of seismic waves, and the amplification effect of incident angle on high frequency response spectrum values is very significant. On the spectrum shape surface, the influence range of the period of different site types is different, and the influence range of incident angle on the period of type III site is obviously wider than that of type II site.
-
Key words:
- SH wave /
- Oblique incidence /
- The spectral ratio /
- Amplification effect
-
表 1 天然地震波基本信息
Table 1. Basic information of natural ground motions
编号 地震名称 震级/级 台站名称 震中距/km 记录分量 1 1979年美国Imperial Valley-06地震 6.5 Parachute Test Site 12.69 225 2 1999年台湾集集地震 7.6 TCU046 16.74 EW 3 1978年伊朗Tabas地震 7.3 Tabas 2.05 L1 4 1999年台湾集集地震 7.6 TCU075 0.89 EW 5 2004年日本新泻地震 6.6 TYMH05 175.52 NS 6 1999年美国Hector Mine地震 7.1 Amboy 43.05 090 7 1999年台湾集集地震 7.6 TCU101 2.11 EW 8 2010年墨西El Mayor-Cucapah地震 7.2 El Centro Array #12 11.26 000 表 2 千叶场地计算模型参数
Table 2. Model parameters of the Chiba-ken site
土层编号 土类名称 剪切波速/
(m·s−1)密度/(g·cm−3) 层厚/m 1 亚黏土 140 1.75 5 2 砂质黏土 320 1.80 5 3 细砂 320 2.00 14 4 细砂 420 2.10 16 5 基岩输入 540 2.20 — 表 3 地铁17号线某站场计算模型参数
Table 3. Model parameters of the Line 17 Subway site
土层编号 土类名称 剪切波速/
(m·s−1)密度/(g·cm−3) 层厚/m 1 粉质黏土 192 1.90 10 2 细砂 236 1.95 25 3 粉质黏土 331 2.00 10 4 细砂 355 2.00 26 5 粉质黏土 362 2.05 12 6 粉质黏土 416 2.10 17 7 粉质黏土 467 2.15 28 8 基岩输入 505 2.20 — -
陈维, 2007. 多层土粘弹性边界的二维斜入射SH波时域输入. 山西建筑, 33(25): 84—85Chen W. , 2007. A method of inclined-incidence SH waves input on viscous-spring boundary in multilayered soil. Shanxi Architecture, 33(25): 84—85. (in Chinese) 范留明, 赵钦, 2014. 成层半空间出平面自由波场的界面子波算法. 地震工程学报, 36(4): 765—772Fan L. M. , Zhao Q. , 2014. Interfacial wavelet superposition method for out-of-plane wave motion of a free field in a layered half space. China Earthquake Engineering Journal, 36(4): 765—772. (in Chinese) 高智能, 卓卫东, 谷音, 2017. SH波斜入射时有阻尼成层介质自由场的一维化时域算法. 振动与冲击, 36(16): 37—43, 84Gao Z. N. , Zhuo W. D. , Gu Y. , 2017. A 1 D time-domain method for free field motion in layered media with damping under obliquely incident SH wave. Journal of Vibration and Shock, 36(16): 37—43, 84. (in Chinese) 廖河山, 陈清军, 徐植信, 1994. SH波倾斜入射时土层的非线性响应分析. 同济大学学报, 22(4): 517—522Liao H. S. , Chen Q. J. , Xu Z. X. , 1994. Nonlinear responses of layered soils to obliquely incident SH waves. Journal of Tongji University, 22(4): 517—522. (in Chinese) 刘晶波, 王艳, 2006. 成层半空间出平面自由波场的一维化时域算法. 力学学报, 38(2): 219—225Liu J. B. , Wang Y. , 2006. A 1-D time-domain method for 2-D wave motion in elastic layered half-space by antiplane wave oblique incidence. Chinese Journal of Theoretical and Applied Mechanics, 38(2): 219—225. (in Chinese) 王笃国, 赵成刚, 2016. 地震波斜入射时二维成层介质自由场求解的等效线性化方法. 岩土工程学报, 38(3): 554—561Wang D. G. , Zhao C. G. , 2016. Two-dimensional equivalent linear seismic analysis of free field in layered half-space due to oblique incidence. Chinese Journal of Geotechnical Engineering, 38(3): 554—561. (in Chinese) 尤红兵, 赵凤新, 荣棉水, 2009. 地震波斜入射时水平层状场地的非线性地震反应. 岩土工程学报, 31(2): 234—240You H. B. , Zhao F. X. , Rong M. S. , 2009. Nonlinear seismic response of horizontal layered site due to inclined wave. Chinese Journal of Geotechnical Engineering, 31(2): 234—240. (in Chinese) Heymsfield E. , 2000. Two-dimensional scattering of SH waves in a soil layer underlain with a sloping bedrock. Soil Dynamics and Earthquake Engineering, 19(7): 489—500. doi: 10.1016/S0267-7261(00)00030-0 Katayama T. , Yamazaki F. , Nagata S. , et al, 1990. A strong motion database for the Chiba seismometer array and its engineering analysis. Earthquake Engineering & Structural Dynamics, 19(8): 1089—1106. Lee V. W. , Luo H. , Liang J. W. , 2006. Antiplane (SH) waves diffraction by a semicircular cylindrical hill revisited: an improved analytic wave series solution. Journal of Engineering Mechanics, 132(10): 1106—1114. doi: 10.1061/(ASCE)0733-9399(2006)132:10(1106) Liu G. , Chen H. T. , Liu D. K. et al. , 2010. Surface motion of a half-space with triangular and semicircular hills under incident SH waves. Bulletin of the Seismological Society of America, 100(3): 1306—1319. doi: 10.1785/0120090273 Tsaur D. H. , Chang K. H. , 2009. Scattering and focusing of SH waves by a convex circular-arc topography. Geophysical Journal International, 177(1): 222—234. doi: 10.1111/j.1365-246X.2008.04080.x Tsaur D. H. , 2011. Scattering and focusing of SH waves by a lower semielliptic convex topography. Bulletin of the Seismological Society of America, 101(5): 2212—2219. doi: 10.1785/0120100324