The Analysis of Seismogenic Structure of Seismic Source Area of Qingzhou ML4.1 Earthquake in Shandong
-
摘要: 2022年5月2日7时53分山东潍坊青州发生ML4.1地震,基于中国地震台网中心的地震观测报告和山东数字化台网的波形资料,采用双差定位法对潍坊青州地震序列进行重新精定位,利用 P波初动方法对其中11个ML2.0以上的地震求震源机制解。利用阻尼时空应力反演方法和MSATSI软件包反演震源区局部应力场特征。经过分析得到以下结论:青州地震序列往SN向展布、倾向N。主震震源机制显示为正断,其节面Ⅰ走向263°、倾角31°、滑动角−109°,节面Ⅱ走向106°、倾角61°、滑动角−78°,局部应力场最佳主压应力轴呈NWW-SEE向(−92.19°)低倾角(16.09°)挤压,最优主张应力轴呈SSE-NNW向(0.26°)近水平(8.45°)拉张。本文推断发震断层为走向EW的隐伏断裂。Abstract: The ML4.1 earthquake occurred in Qingzhou, Weifang, Shandong province,at 7:53 a.m., on May 2, 2022. Based on the earthquake observation reports from the China Earthquake Networks Center and the digitized waveform data from the Shandong Digital Network, the double-difference localization method was used to relocate the earthquake sequence in Qingzhou, Weifang, and the P-wave initial motion method was used to determine the source mechanism solutions for 11 of the earthquakes with magnitude above ML2.0. The damped spatial-temporal stress inversion method and MSATSI software package were used to invert the local stress field characteristics in the source area. The following conclusions were obtained from the analysis. The Qingzhou earthquake sequence is orientated in the SN direction tending to the North. The focal mechanism of mainshock shows a rupture in normal type with a 263° strike, 31° dip, and −109° rake for node I, and a 106° strike, 61° dip, and −78° rake for node II. The principal compressive stress axis is in the direction of the SSE-NNW(−92.19°) with a low plunge (16.09°), and the optimal extensional stress axis is the direction of the SSE-NNW(0.26°) with a horizontal plunge(8.45°). In this paper, we concluded that the seismogenic fault is a blind fault which is trended in the direction of the E-W.
-
表 1 青州地震震群震源机制解
Table 1. The focal mechanism solutions of Qingzhou earthquake swarm
序号 发震时刻 经度/(°) 纬度/(°) 深度/km 震级ML 节面Ⅰ
str/dip/rake节面Ⅱ
str/dip/rakePaz/Ppl Taz/Tpl Baz/Bpl MDB P波初动 地震类型 1 2022-05-01
T07:23:57118.268 36.550 5.0 2.1 150/90/90 15/0/135 240/45 60/45 150/0 0.21 19 R 2 2022-05-01
T07:32:34118.268 36.540 4.6 2.9 320/0/0 50/90/ -90 320/45 140/45 50/0 0.19 26 N 3 2022-05-01
T08:01:00118.270 36.545 5.0 2.4 27/75/-132 280/44/-22 256/44 147/19 40/40 0.17 18 N-SS 4 2022-05-02
T07:53:27118.266 36.530 5.0 4.1 263/31/-109 106/61/-78 43/72 187/15 280/10 0.13 30 N 5 2022-05-02
T20:31:51118.267 36.542 5.0 3.4 100/90/90 325/0/135 190/45 10/45 100/0 0.18 22 R 6 2022-05-02
T20:36:35118.265 36.545 3.9 3.0 100/90/90 325/0/135 190/45 10/45 100/0 0.12 24 R 7 2022-05-03
T00:41:23118.265 36.535 5.1 2.4 206/53/115 348/44/60 278/5 176/69 100/20 0.25 24 R 8 2022-05-03
T19:58:37118.264 36.541 5.0 2.5 182/44/120 324/53/65 72/5 174/69 340/20 0.18 22 R 9 2022-05-03
T20:50:23118.266 36.541 5.0 2.4 191/36/126 329/ 62/67 75/14 198/ 65 340/20 0.18 20 R-SS 10 2022-05-12
T18:14:36118.266 36.552 4.9 2.7 300/70/-90 120/20/-90 210/65 30/25 120/0 0.20 15 N 11 2022-05-13
T22:13:16118.270 36.551 4.0 2.3 123/31/-109 326/61/ -78 263/72 47/15 140/10 0.19 16 N 注:str、dip、rake分别是震源机制的走向、倾角、滑动角;Paz/Ppl 、Taz/Tpl 、 Baz/Bpl分别代表P轴、T轴、 B轴的方位角和倾伏角;MDB表示矛盾比。 表 2 青州地震序列震源机制解反演使用的一维速度模型
Table 2. The 1-D velocity model used for focal mechanisms inversion of Qingzhou earthquake sequence
参数 序号 1 2 3 4 5 6 7 8 9 10 11 12 顶层深度/km 0.0 1.0 5.0 7.0 10.1 12.0 15.0 18.0 20.0 23.0 25.0 32.0 P波速度/(km·s-1) 2.25 3.80 5.10 5.20 5.40 5.60 5.80 6.00 6.20 6.50 7.20 8.13 表 3 青州地震震源区应力场
Table 3. The stress field in seismic area of Qingzhou earthquake
R值 最优主压应力轴(σ1) 中间应力轴(σ2) 最优主张应力轴(σ3) 方位角/° 倾伏角/° 方位角/° 倾伏角/° 方位角/° 倾伏角/° 最优解 0.51 −92.19 16.09 116.99 71.72 0.26 8.45 -
崔华伟, 万永革, 黄骥超等, 2017.2015年3月新不列颠MS7.4地震震源及邻区构造应力场特征. 地球物理学报, 60(3): 985—998Cui H. W. , Wan Y. G. , Huang J. C. , et al. , 2017. The tectonic stress field in the source of the New Britain MS7.4 earthquake of March 2015 and adjacent areas. Chinese Journal of Geophysics, 60(3): 985—998. (in Chinese) 崔华伟, 万永革, 黄骥超等, 2019. 帕米尔—兴都库什地区构造应力场反演及拆离板片应力形因子特征研究. 地球物理学报, 62(5): 1633—1649 doi: 10.6038/cjg2019M0202Cui H. W. , Wan Y. G. , Huang J. C. , et al. , 2019. Inversion for the tectonic stress field and the characteristic of the stress shape factor of the detachment slab in the Pamir-Hindu Kush area. Chinese Journal of Geophysics, 62(5): 1633—1649. (in Chinese) doi: 10.6038/cjg2019M0202 崔华伟, 郑建常, 张正帅等, 2020. 长岛地区小地震断层面参数拟合及应力场特征. 地震地质, 42(6): 1432—1445Cui H. W. , Zheng J. C. , Zhang Z. S. , et al. , 2020. Fitting the fault plane parameters with small earthquakes and the characteristics of stress field of Changdao area. Seismology and Geology, 42(6): 1432—1445. (in Chinese) 崔华伟, 万永革, 王晓山等, 2021.2018年帕卢MW7.6地震震源及苏拉威西地区构造应力场特征. 地球科学, 46(7): 2657—2674Cui H. W. , Wan Y. G. , Wang X. S. , et al. , 2021. Characteristic of tectonic stress field in source region of 2018 MW7.6 Palu earthquake and Sulawesi area. Earth Science, 46(7): 2657—2674. (in Chinese) 崔华伟, 郑建常, 柴光斌等, 2022 a. 2020年2月18日济南长清M 4.1地震震源区发震构造分析. 地球物理学进展, 37(1): 1—10Cui H. W. , Zheng J. C. , Chai G. B. , et al. , 2022 a. Analysis of seismogenic structure in seismic source area about M 4.1 earthquake in Changqing of Jinan on February 18, 2020. Progress in Geophysics, 37(1): 1—10. (in Chinese) 崔华伟, 郑建常, 万永革等, 2022 b. 2021年云南漾濞MS6.4地震序列发震构造及其与2013年洱源、2017年漾濞地震的异同. 地球物理学报, 65(2): 620—636Cui H. W. , Zheng J. C. , Wan Y. G. , et al. , 2022 b. The seismogenic structure of the 2021 Yunnan Yangbi MS6.4 earthquake sequence and the difference between the Eryuan earthquake in 2013, Yangbi earthquake in 2017 and 2021. Chinese Journal of Geophysics, 65(2): 620—636. (in Chinese) 李家灵, 晁洪太, 崔昭文, 1996. 山东临朐盆地边界断裂活动特征及其地震意义. 见: 中国地震学会第六次学术大会论文摘要集. 张家界: 中国地震学会, 76. 孙强, 王涛, 2020. 淄博及邻区活动断裂地震危险性评估. 四川地震, (1): 16—23Sun Q. , Wang T. , 2020. Seismic hazard assessment of active faults in Zibo city and its adjacent area. Earthquake Research in Sichuan, (1): 16—23. (in Chinese) 万永革, 沈正康, 刁桂苓等, 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用. 地球物理学报, 51(3): 793—804 doi: 10.3321/j.issn:0001-5733.2008.03.020Wan Y. G. , Shen Z. K. , Diao G. L. , et al. , 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence. Chinese Journal of Geophysics, 51(3): 793—804. (in Chinese) doi: 10.3321/j.issn:0001-5733.2008.03.020 万永革, 吴逸民, 盛书中等, 2011. P波极性数据所揭示的台湾地区三维应力结构的初步结果. 地球物理学报, 54(11): 2809—2818Wan Y. G. , Wu Y. M. , Sheng S. Z. , et al. , 2011. Preliminary result of Taiwan 3-D stress field from P wave polarity data. Chinese Journal of Geophysics, 54(11): 2809—2818. (in Chinese) 王华林, 盖殿广, 王纪强等, 2011. 淄博市及其邻近地区活断层地震危险性评价. 震灾防御技术, 6(3): 242—256Wang H. L. , Gai D. G. , Wang J. Q. , et al. , 2011. Seismic risk assessment of active faults in Zibo city and its adjacent area. Technology for Earthquake Disaster Prevention, 6(3): 242—256. (in Chinese) 王纪强, 王冬雷, 鹿子林等, 2020. 双山—李家庄断裂地表破裂特征与最新活动性研究. 地震, 40(4): 115—128Wang J. Q. , Wang D. L. , Lu Z. L. , et al. , 2020. The surface rupture characteristics and latest activities of the Shuangshan—Lijiazhuang fault. Earthquake, 40(4): 115—128. (in Chinese) 王志才, 石荣会, 晁洪太等, 2001. 鲁中南隆起区第四纪晚期断裂活动特征. 海洋地质与第四纪地质, 21(4): 95—102Wang Z. C. , Shi R. H. , Chao H. T. , et al. , 2001. Characteristics of the quaternary fault activities in the middle and south region of Shandong province. Marine Geology & Quaternary Geology, 21(4): 95—102. (in Chinese) 郑建常, 王鹏, 李冬梅等, 2013. 使用小震震源机制解研究山东地区背景应力场. 地震学报, 35(6): 773—784 doi: 10.3969/j.issn.0253-3782.2013.06.001Zheng J. C. , Wang P. , Li D. M. , et al. , 2013. Tectonic stress field in Shandong region inferred from small earthquake focal mechanism solutions. Acta Seismologica Sinica, 35(6): 773—784. (in Chinese) doi: 10.3969/j.issn.0253-3782.2013.06.001 Álvarez-Gómez J. A., 2019. FMC—Earthquake focal mechanisms data management, cluster and classification. SoftwareX 9: 299—307. Chen D. , Wang E. Y. , Li N. , 2021. Study on the source parameters of the micro-earthquakes in Laohutai coal mine based on double difference relocation. Soil Dynamics and Earthquake Engineering, 142: 106540. doi: 10.1016/j.soildyn.2020.106540 Frohlich C. , 1992. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75(1—3): 193—198. doi: 10.1016/0031-9201(92)90130-N Hardebeck J. L. , Michael A. J. , 2006. Damped regional-scale stress inversions: methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research: Solid Earth, 111(B11): B11310. Martínez-Garzón P. , Kwiatek G. , Ickrath M. , et al. , 2014. MSATSI: A MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling, and a visualization tool. Seismological Research Letters, 85(4): 896—904. doi: 10.1785/0220130189 Son M. , Shin J. S. , Kim G. , et al. , 2015. Epicenter relocation of two 2013 earthquake sequences in the Yellow Sea, Korea, using travel-time double-differences and Lg-wave cross-correlation. Geosciences Journal, 19(2): 295—303. doi: 10.1007/s12303-014-0038-2 Waldhauser F. , Ellsworth W. L. , 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6): 1353—1368. doi: 10.1785/0120000006 Wessel P., Luis J. F., Uieda L., et al., 2019. The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556—5564.