Experimental Study on Compressive and Seismic Performance of New Type of Vertical Joint Interlocking Grouting Composite Block Wall
-
摘要: 新型竖缝互锁灌孔复合砌块墙体是一种绿色、环保且低碳的新型砌体结构,为研究其抗压性能与抗震性能,分别对墙体进行轴压试验与拟静力试验,分析灌孔方式与构造柱类型对该墙体抗压承载力、荷载分配与变形协调等方面的影响,以及不同构造柱类型对墙体抗震性能的影响。结果表明,随着现浇构造柱与复合砌体部分强度差的减小,墙体整体变形协调能力有所提升;提出了适用于设置构造柱的新型墙体的抗压承载力计算公式,计算值与试验值吻合度较好;芯柱构造柱对墙体延性的提升效率高于现浇构造柱墙体,而现浇构造柱墙体的抗震承载力、极限位移等指标优于芯柱构造柱墙体。研发绿色、环保、低碳的新型砌体结构是助力国家乡村振兴战略和改善村镇建筑抗灾能力的有效途径,该新型墙体结构为新疆地区村镇建筑提供了一种新的选择。Abstract: The new type of vertical joint interlocking grouting hole composite block wall is a green, environmentally friendly, and low-carbon new masonry structure. In this paper, we studied the compressive and seismic performance, by testing its axial compression and pseudo-static pressure on walls, respectively. The effects of the grouting hole method and column type on the compressive bearing capacity, load distribution, and deformation coordination of the wall were analyzed, as well as the effects of different column type on the seismic performance of the wall. The results suggest that as the strength difference between cast-in-place structural columns and composite masonry decreases, the overall deformation coordination ability of the wall improves. A formula for calculating the compressive bearing capacity of a new type of wall suitable for setting up structural columns was proposed, and the calculated values are in good agreement with the experimental values. The efficiency of improving the ductility of walls with core column construction columns is higher than that of cast-in-place construction column walls, and the seismic bearing capacity, ultimate displacement, and other indicators of cast-in-place construction column walls are better than those of core column construction column walls. Since developing green, environmentally friendly, and low-carbon new masonry structures is an effective way to assist the national rural revitalization strategy and improve the disaster resistance of rural buildings, this new wall structure prpposed in our study provides a new choice for rural buildings in the Xinjiang region.
-
表 1 复合砌块墙体抗压及抗震性能试验方案
Table 1. Test plan for compressive and seismic performance of composite block walls
编号 墙体长×高×厚/mm 灌孔方式 构造柱措施 VJIBW1 1360×1390×190 满灌 无构造柱 VJIBW2 1360×1390×190 空心 芯柱LC20 VJIBW3 1360×1390×190 中部单孔灌注 芯柱LC20 VJIBW4 1360×1390×190 满灌 芯柱LC20 VJIBW5 1390×1390×190 满灌 现浇LC20 VJIBW6 1390×1390×190 满灌 现浇LC25 VJIBW7 1755×1600×190 满灌 芯柱LC20 VJIBW8 1755×1600×190 满灌 现浇LC20 注:其中VJIBW1、VJIBW2、VJIBW3、VJIBW4、VJIBW5、VJIBW6为抗压试验墙体,VJIBW7、VJIBW8为抗震试验墙体。 表 2 墙体材料抗压强度
Table 2. Compressive strength of wall materials
项目 墙体材料 砂浆 灌孔材料 陶粒混凝土 空心砌块 空心砌块砌体 灌孔砌块砌体 设计强度等级 Mb5.0 Cb5.0 LC20 LC25 MU5 — — 实测强度均值/MPa 5.60 6.05 19.30 23.90 5.27 2.99 5.76 表 3 墙体抗压试验结果
Table 3. Compressive test results of walls
编号 初裂荷载/kN 开裂荷载/kN 极限荷载/kN 强度/MPa VJIBW1 480.0 680.0 1135.0 4.39 VJIBW2 320.0 440.0 880.5 3.41 VJIBW3 170.0 320.0 960.0 3.72 VJIBW4 360.0 480.0 1413.8 5.47 VJIBW5 400.0 600.0 2126.0 8.23 VJIBW6 500.0 750.0 2105.0 8.15 表 4 现浇构造柱墙体荷载分配
Table 4. Load distribution of cast-in-place structural column walls
加载步 VJIBW5 VJIBW6 荷载/kN ε0×106 ε1×106 ε2×106 Nw/kN Nc1/kN Nc2/kN 荷载/kN ε0×106 ε1×106 ε2×106 Nw/kN Nc1/kN Nc2/kN 1 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 2 200 38.3 37.3 39.3 71.7 62.5 65.8 250 17.0 148.3 149.3 31.8 108.7 109.5 3 400 79.0 74.7 89.3 147.8 114.8 137.4 500 75.0 292.0 294.7 140.4 179.0 180.6 4 600 114.0 109.0 127.3 213.4 178.3 208.3 750 116.5 363.0 367.3 218.0 264.4 267.6 5 700 151.0 142.3 168.7 282.6 191.0 226.4 875 174.5 431.7 439.7 326.6 271.7 276.7 6 800 194.0 173.7 210.0 363.1 197.8 239.2 1000 246.0 503.0 510.0 460.4 267.9 271.7 7 900 230.3 202.7 250.7 431.1 209.6 259.3 1125 321.5 574.3 581.7 601.7 260.0 263.3 8 1000 271.7 232.3 293.0 508.4 217.4 274.2 1250 417.5 649.7 657.3 781.4 232.9 235.7 9 1100 316.7 260.3 340.7 592.6 219.8 287.6 1375 482.5 704.7 714.0 903.0 234.4 237.6 10 1200 361.3 288.7 387.3 676.2 223.7 300.1 1500 548.5 773.7 787.0 1026.5 234.7 238.8 11 1300 389.3 318.7 438.0 728.6 240.6 330.7 1625 609.5 836.7 851.3 1140.7 240.1 244.3 12 1400 403.7 353.0 490.7 755.5 269.7 374.9 1750 701.0 905.3 906.0 1311.9 219.0 219.1 13 1500 457.3 387.3 551.0 855.9 265.9 378.2 1875 859.5 981.3 994.0 1608.6 132.4 134.1 14 1600 616.7 465.0 680.7 1154.1 181.0 264.9 2000 854.5 1018.0 1035.0 1599.2 198.7 202.1 15 1800 702.7 532.7 803.7 1315.0 193.3 291.7 2105 780.5 1034.3 1049.3 1460.7 319.8 324.5 16 2000 852.2 540.7 829.0 1321.3 267.9 410.8 — — — — — — — 17 2126 897.2 548.7 865.7 1288.2 325.0 512.8 — — — — — — — 注:表中ε0、ε1、ε2分别为墙体中部复合砌体部分、左侧构造柱、右侧构造柱应变;Nw、Nc1、Nc2分别为墙体中部复合砌体部分、左侧构造柱、右侧构造柱承担的荷载;表中应变为应变片测得的微应变,故表示为ε×106,图8、图9中应变值同理。 表 5 墙体荷载及位移特征值
Table 5. Load and displacement characteristic values of walls
编号 开裂 极限 破坏 Pcr/kN Δcr/mm Pu/kN Δu/mm Pf/kN Δf/mm VJIBW7 93.75 4.89 138.05 17.13 117.10 21.98 VJIBW8 127.12 5.90 226.24 19.90 191.50 24.35 表 6 墙体延性分析表
Table 6. Analytical results of wall ductility
编号 Py/kN Δy/mm Δu/mm Δf/mm μ λ Ru VJIBW7 115.08 7.78 17.13 21.98 2.83 1.28 1/73 VJIBW8 204.93 14.90 19.90 24.35 1.63 1.22 1/66 -
曹阳, 2020. 装配式互锁混凝土砌块墙的抗震性能研究. 长沙: 湖南大学.Cao Y. , 2020. Research on seismic performance of prefabricated interlocking concrete block wall. Changsha: Hunan University. (in Chinese) 常想徳, 孙静, 谭明, 2021. 新疆农牧区民居房屋结构类型与震害特征分析. 内陆地震, 35(1): 75—86Chang X. D. , Sun J. , Tan M. , 2021. Analysis on structural types and earthquake damage features of rural houses in Xinjiang agricultural and pastoral areas. Inland Earthquake, 35(1): 75—86. (in Chinese) 范军, 刘福胜, 胡玉秋等, 2018. 自保温暗骨架承重墙体保温性能和抗压强度试验研究. 新型建筑材料, 45(6): 109—111 doi: 10.3969/j.issn.1001-702X.2018.06.026Fan J. , Liu F. S. , Hu Y. Q. , et al. , 2018. Experimental research on thermal insulation performance and comprehensive strength of self-insulating structural wall with inner frame. New Building Materials, 45(6): 109—111. (in Chinese) doi: 10.3969/j.issn.1001-702X.2018.06.026 葛玉琦, 2010. 芯柱式构造柱约束墙体抗震性能试验研究. 重庆: 重庆大学.Ge Y. Q. , 2010. Experimental research on seismic behavior of masonry walls constrained by core-tie-columns. Chongqing: Chongqing University. (in Chinese) 黄靓, 施楚贤, 2019. 新中国成立70年来砌体结构发展与展望. 建筑结构, 49(19): 113—118, 135Huang L. , Shi C. X. , 2019. Development and prospect of masonry structure in 70 years since the founding of People's Republic of China. Building Structure, 49(19): 113—118, 135. (in Chinese) 黄靓, 张玥, 施楚贤等, 2022. 超薄灰缝烧结弃土高性能砌块砌体受力性能研究. 建筑结构, 52(13): 147—152Huang L. , Zhang Y. , Shi C. X. , et al. , 2022. Study on the mechanical properties of ultra-thin layer mortared high performance musk sintered block masonry. Building Structure, 52(13): 147—152. (in Chinese) 李启鑫, 翟希梅, 唐岱新, 2004. 设置构造柱混凝土砌块墙体受压承载力试验研究. 建筑砌块与砌块建筑, (6): 7—11. 刘桂秋, 赵衍, 施楚贤等, 2010. 灌孔砼砌块砌体中材料强度匹配问题的研究. 湖南大学学报(自然科学版), 37(2): 18—21Liu G. Q. , Zhao Y. , Shi C. X. , et al. , 2010. Analyses of material strength match of grouted concrete block masonry. Journal of Hunan University (Natural Sciences), 37(2): 18—21. (in Chinese) 施楚贤, 1996. 设置砼构造柱砖砌体结构受压承载力计算. 建筑结构, (3): 13—16. 温和平, 唐丽华, 刘军等, 2016. 新疆农居安居工程现状调查及减灾实效分析. 自然灾害学报, 25(5): 184—190Wen H. P. , Tang L. H. , Liu J. , et al. , 2016. Present situation investigation of rural housing project in Xinjiang and analysis of its actual disaster reduction effectiveness. Journal of Natural Disasters, 25(5): 184—190. (in Chinese) 徐春一, 许纪峰, 马莹莹等, 2020. 竖向灰缝处有无砂浆砌体沿齿缝截面抗弯性能研究. 沈阳建筑大学学报(自然科学版), 36(3): 449—456Xu C. Y. , Xu J. F. , Ma Y. Y. , et al. , 2020. Experimental study on flexural behavior of mortar masonry with and without vertical mortar joints along teeth joint section. Journal of Shenyang Jianzhu University (Natural Science), 36(3): 449—456. (in Chinese) 徐建, 梁建国, 杨春侠, 2022. 砌体结构的现状与发展建议. 土木工程学报, 55(5): 1—6Xu J. , Liang J. G. , Yang C. X. , 2022. The current situation of masonry structure and its development suggestions. China Civil Engineering Journal, 55(5): 1—6. (in Chinese) 郁晓玲, 何明胜, 汤伟忠等, 2016. 新型复合墙体抗压性能试验研究. 建筑结构, 46(12): 60—66Yu X. L. , He M. S. , Tang W. Z. , et al. , 2016. Experimental study on compressive properties of the new composite wall. Building Structure, 46(12): 60—66. (in Chinese) 张国伟, 王胜, 陈嵘等, 2017. 干垒式灌孔混凝土砌块砌体抗压性能试验研究. 建筑科学, 33(11): 42—47Zhang G. W. , Wang S. , Chen R. , et al. , 2017. Experimental study on compressive performance of dry-stacked grouted-concrete block masonry. Building Science, 33(11): 42—47. (in Chinese) 朱楚翔, 2019. 带芯柱构造柱灌孔复合砌块墙体抗压性能研究. 石河子: 石河子大学.Zhu C. X. , 2019. Research on compressive performance of grouted composite block wall with core-column. Shihezi: Shihezi University. (in Chinese) 朱婉婕, 黄靓, 滕瀚思等, 2019. 用于装配式墙体的加长型混凝土砌块砌体的受力性能试验研究. 结构工程师, 35(3): 187—191 doi: 10.3969/j.issn.1005-0159.2019.03.026Zhu W. J. , Huang L. , Teng H. S. , et al. , 2019. Research on mechanical properties of prefabricated lengthened concrete block masonry. Structural Engineers, 35(3): 187—191. (in Chinese) doi: 10.3969/j.issn.1005-0159.2019.03.026 Dyskin A. V. , Pasternak E. , Estrin Y. , 2012. Mortarless structures based on topological interlocking. Frontiers of Structural and Civil Engineering, 6(2): 188—197. Fonseca F. S. , Fortes E. S. , Parsekian G. A. , et al. , 2019. Compressive strength of high-strength concrete masonry grouted prisms. Construction and Building Materials, 202: 861—876. doi: 10.1016/j.conbuildmat.2019.01.037 Nalon G. H. , Ribeiro J. C. L. , Pedroti L. G. , et al. , 2022. Review of recent progress on the compressive behavior of masonry prisms. Construction and Building Materials, 320: 126181. doi: 10.1016/j.conbuildmat.2021.126181 Yi M. S., Xu Y. Q., Lou N., et al., 2013. Theoretical analysis and experimental study of strength matching between mortarless grouted concrete and block material. Applied Mechanics and Materials, 368—370: 1022—1026.