Nonlinear Seismic Response Analysis of Two-dimensional Depositional Basins
-
摘要: 沉积盆地对地震动具有明显的放大效应。利用ABAQUS软件及二次开发平台,编写了基于Davidenkov骨架曲线的VUMAT子程序,对饱和沉积盆地进行了非线性反应模拟。建立不同基岩面坡度的二维T型沉积盆地,输入4条不同频谱特性及幅值的近断层地震波,研究不同盆地基岩面坡度、饱和介质特性、地震波强度等因素对沉积盆地非线性反应规律的影响。研究结果表明,地震波作用可造成饱和沉积盆地发生局部液化,地震波强度越大,液化区分布范围越广,地表处出现了永久塑性变形;地震波强度的增大导致地表土层发生液化的时间提前,且下层土的液化会减弱地震波的传播速度,导致上层地表土发生液化的时间延后;盆地内地表最不利位置随着基岩面坡度的增大逐渐向中心处移动,不同工况下速度峰值放大系数为1.18~3.33。
-
关键词:
- Davidenkov本构模型 /
- VUMAT /
- 二维非线性分析 /
- 近断层沉积盆地 /
- 场地反应
Abstract: Near fault seismic motion can lead to significant seismic disasters in the near field area, particularly in regions with sedimentary terrain, exacerbating the potential disaster. In this paper, ABAQUS software and secondary development platform are employed to compile VUMAT subroutine based on Davidenkov skeleton curve, to conduct nonlinear simulation of saturated sedimentary basin, and to establish two-dimensional T-shaped Sedimentary basin with different bedrock surface slopes. Four near fault Seismic wave with different spectral characteristics are selected to input the site with different amplitudes, and the nonlinear response of the site under the action of different basin slopes and seismic wave intensities is studied. It is found that seismic wave can cause liquefaction in saturated sedimentary basin. The greater the strength of seismic wave is, the wider the distribution range of liquefaction area is, and permanent plastic deformation occurs on the surface; The increase of seismic wave strength can lead to the advance of liquefaction time of surface soil layer, and the liquefaction of subsoil will weaken the propagation strength of Seismic wave, resulting in the delay of liquefaction time of upper surface soil layer.As the bedrock surface slope increases, the most vulnerable location on the basin's surface shifts toward the center. Furthermore, the amplification coefficient of peak velocity ranges from 1.18 to 3.33 under various working conditions. -
引言
北京时间2019年2月2日5时54分,新疆塔城地区塔城市(46.73°N,83.34°E)发生MS5.2地震,震源深度16km,震中距塔城市区27km、距额敏县城32km、距裕民县城64km、距托里县城90km、距克拉玛依市区172km、距和布克赛尔县城181km、距乌合尔区194km。塔城市、托里县、额敏县、博乐市、精河县、温泉县、和布克赛尔县、兵团第五师83团、奎屯市、乌苏市、霍尔果斯市、阿勒泰市、福海市、兵团北屯市、克拉玛依市、伊宁市等地震感强烈。地震造成震中附近房屋发生不同程度破坏,其中以无抗震能力的土木结构房屋破坏最为严重。
地震频度高、震源浅、分布广、灾害重是本次地震灾害的主要特征,随着经济、社会的不断发展,各级政府对乡村地区房屋抗震意识不断提高,在城镇地区推行多种有针对性的房屋改造工程。2004年新疆开始正式实施城乡抗震安居工程(张勇,2006),2011年开始按“高起点规划、高水平建设、高效益配套”要求建设每户不低于80m2,户型实用、耐用、设施齐全,反映地域特色和文化内涵的安居富民房(谭明等,2014;常想德,2017a,2017b)。安居富民工程的实施推广使新疆农、牧区房屋抗震性能迅速提高,此类房屋在新疆境内多次破坏性地震中均未出现破坏,其抗震性能得到检验。相反,未经正规抗震设计的老旧、自建房屋破坏和倒塌比例非常高,所以推广安居富民工程对减少地震带来的损失具有至关重要的意义(姚远等, 2015, 2016;阿里木江·亚力昆等,2018;温和平等,2017)。
本文在分析塔城市MS5.2地震震区烈度分布及场地条件的基础上,归纳总结房屋结构、震害特征,并通过分析等震线分布、活动构造特征及深部构造,探讨本次地震可能的发震构造。
1. 地震烈度及场地条件
1.1 地震烈度
新疆维吾尔自治区地震局地震现场工作队按照《地震现场工作第3部分:调查规范》(GB/T 18208.3—2011)(中华人民共和国国家质量监督检验检疫总局等,2011)、《中国地震烈度表》(GB/T 17742—2008)(中华人民共和国国家质量监督检验检疫总局等,2008)对震区7个乡(镇、场)共33个调查点开展烈度调查,确定Ⅵ度点13个、Ⅴ度点20个,依据烈度调查情况,确定了本次地震极震区烈度为Ⅵ度,Ⅵ度区西起喀拉哈巴克乡以东,东至恰夏镇东北地区,等震线呈近EW走向,与该地区活动断裂走向近一致,等震线长轴半径约9.7km,短轴半径约6.8km,总面积206.77km2,主要涉及塔城市恰夏镇、恰合吉牧场及喀拉哈巴克乡(图 1)。
1.2 震区场地条件
震区位于塔城坳陷带内,地貌主要由震中东部锡伯图河冲积扇与西部阿不都拉河冲积扇组成的山前冲、洪积扇群组成。总体地势北高南低,东西向地势为冲积扇轴部向冲积扇两侧或冲积扇结合部倾斜,盆地地形平坦、开阔,坡度平缓。震区地层岩性具典型的二元结构,由上部粉土与下部厚层卵砾石组成,局部地区上部粉土层较厚,地貌现多为农田。
新构造运动以来,随着西准噶尔山地及塔尔巴哈台山和巴尔鲁克山的不一致隆升,造成山体倾斜,山势由西向东呈阶梯状下降。同时,河流下切造成河谷内形成多级高度不同的阶地,如达尔布特河发育高度不同的多级河流阶地,喀浪古尔河与阿布都拉河等在山口地带发育2~3级河流阶地。这反映出震区现代构造运动具有间歇性和差异性的特点,各级阶地拔河高度大致反映了晚第四纪以来的抬升幅度。另外,在山体隆升的同时,塔城盆地发生相对沉降,沉降幅度由南北山前地带向盆地中央逐渐增大,在盆地内部沉积了较厚的第四纪堆积物,厚度可达258m。本次地震震中位于山前冲洪积平原上,该地貌单元内场地条件单一,为Ⅱ类场地(图 1)。
2. 震区房屋结构类型及震害特征
2.1 震区房屋结构类型
本次地震涉及的房屋结构类型主要包括土木结构、砖木结构、砖混结构、框架结构和安居富民房。
(1) 土木结构。震区土木结构房屋多数为20世纪八九十年代建造的“干打垒”房屋,墙体由黏性土夯打密实而成。部分房屋基础和底部为砖砌体墙体,并砌筑土坯墙(土坯墙与砖墙间未进行有效、可靠连接),部分房屋墙体勒脚为后期填充式单砖砌筑,还有部分房屋将木梁房顶上面改造成彩钢板房顶。该类房屋在灾区乡村占比较大,承重墙体多为土坯墙和夯土墙,建筑材料强度低,是典型的脆性结构,无任何抗震措施,屋面与墙体之间缺乏有效连接,房屋整体性很差,在水平地震作用下,整个屋面易产生推力,破坏承重外墙(葛鸣等,2012;王永亮等,2014),从而出现墙体倒塌或屋顶坍塌现象。本次地震后,恰夏镇禾斯阔甫尔村和喀拉哈巴克乡阿热散村“干打垒”房屋由于地基不稳,加之风雨侵蚀,使后墙外闪,纵横墙间出现裂缝(图 2(a)、2(b))。此外,震区土木结构房屋多因年久失修,震前已普遍存在细小裂缝,本次地震使旧裂缝加宽,部分房屋旧裂缝加宽现象相对明显(图 2(c)、2(d));还有一些房屋墙皮发生脱落、纵横墙连接处出现竖向裂缝、门(窗)洞角出现斜裂缝(图 2(e)),恰夏镇靠近震中方向的西山墙与纵墙裂缝较多,单坡屋顶类的房屋滴水侧南纵墙与横墙间裂缝较多(图 2(f))。
(2) 砖木结构。震区该类房屋较少,主要为年代较久的居民自建房、政府、学校,房屋墙体为黏土砖砌筑,无圈梁及构造柱等抗震措施,多为硬山搁檩形式,与墙体间无可靠连接措施。震区附近砖木结构房屋虽抗震性能差,但本次震害不明显,多数为基本完好,少数出现旧裂缝加宽现象,如喀拉哈巴克乡巴斯博孜达克东村一户2002年修建的120m2砖木结构房屋,因地基不稳造成房屋后纵墙裂缝,2008年曾进行抗震加固,但本次地震仍使旧裂缝加宽(图 3(a))。
(3) 砖混结构。该类房屋主要分为预制板楼顶和现浇楼顶两类,主要为建成一段时间的居民自建房、乡(镇)政府办公用房、干部周转房、学校、幼儿园等,此类房屋一般进行了抗震设防,设置了圈梁、构造柱等抗震措施,且施工质量较好,建设时依据的抗震设计规范版本虽不同,但抗震性能相对较好。震区调查结果显示该类房屋多数基本完好,个别出现轻微破坏,主要震害现象为墙体斜裂缝、门(窗)洞角斜裂缝、预制板间连接处开裂、吊顶脱落等,如恰合吉牧场农二队和滑雪场砖混结构房屋预制板顶连接处出现裂缝(图 3(b)),门洞角出现斜裂缝(图 3(c))。单层砖混结构民居房屋多为未经抗震设防的自建房,材料强度和砌体整体强度较低,部分房屋建造年代久远,施工质量差,缺乏抗震措施,抗震性能较差(图 3(d))。
(4) 框架结构。该类房屋是由钢筋混凝土梁、柱等构件组成承重体系的房屋,主要为乡(镇)政府办公楼、学校幼儿园教学楼等,具有平面布置灵活、可任意分割房间、易满足生产工艺和使用要求、自重轻、能有效减小地震作用等优点。设计合理的框架结构房屋抗震性能一般较好,具有良好的延性。震区调查结果显示该类房屋框架主体结构未遭受破坏,多数为完好无损。恰夏镇中心学校小学教学楼轻微破坏,填充墙墙体门洞角出现斜裂缝(图 3(e))和廊洞部横向裂缝(图 3(f)),这可能因为填充墙多采用空心砖或混凝土砌块,使填充墙侧向刚度大于框架侧向刚度,框架结构属于柔性结构,框架柱变形大于填充墙,变形不协调,从而导致填充墙产生轻微裂缝(谭明等,2014;孙静等,2014)。
(5) 安居富民房。该类房屋多在原宅基地上新建,部分为集中成片建设。为确保安居富民房达到抗震要求,各级政府和相关部门采取了一系列管理和技术措施,并为建房户提供指导和服务。震区安居富民房主要以砖混结构为主,随着建设任务的完成,砖木结构和砖混结构房屋占比迅速扩大,将成为主要结构类型。该类房屋抗震措施满足设防要求,抗震性能良好,在本次地震中未发生明显破坏(图 4(a)、4(b))。
2.2 地震灾害特征分析
(1) 本次地震震中烈度为Ⅵ度,根据烈度调查,初步认为本次地震发震构造为塔城盆地北缘塔克台断裂向盆地扩展形成的一条隐伏断层,房屋震害较重的调查点以近东西向展布。本次地震Ⅵ度区受山前断裂和场地条件的影响明显,Ⅵ度区影响范围大体呈东西向条带状分布。
(2) 本次地震Ⅵ度区涉及恰夏镇、恰合吉牧场、喀拉哈巴克乡,现场调查发现本次地震未造成人员伤亡,也未造成大面积房屋结构性破坏,仅造成少数老旧土木结构房屋破坏、个别砖混结构房屋和框架结构房屋轻微破坏,损失和影响范围较小。
(3) 安居富民房具有良好的结构抗震措施和合理的基础防护措施,抵御了本次地震灾害,震区此类房屋抗震性能良好,未出现破坏。
(4) 恰合吉牧场场部距微观震中仅2km,但未造成大面积房屋破坏,居民房屋抗震能力较强,且老旧房屋占比较小,这是地震灾害少的原因。
3. 震区发震构造分析
3.1 地震构造背景
塔城盆地位于天山和阿尔泰山之间,在大地构造上位于哈萨克斯坦—准噶尔板块内(罗福忠等,2015),是在古生代褶皱基底上发育的新生代山间盆地。盆地东西长约160km,南北宽约90km,总面积约8300km2(冯乾文,2009)。盆地由北部的塔尔巴哈台山、南部的巴尔鲁克山以及东部的乌尔喀什尔山(谢米斯台山)环抱而成(图 5(a)),在空间上呈不规则方形,主体走向为NE—SW向。布格重力异常及剩余重力异常、二维地震及电法反演资料均显示,塔城盆地南北向具有“两拗夹一隆”构造格局(吕铁良等,2015)。盆地构造格局总体上被NE—近EW向塔克台断裂、冬别列克断裂控制。
本次地震震中位于塔尔巴哈台山以南的塔城盆地内,盆地内活动断裂不发育,距震中最近的一条区域性活动断裂带为塔城盆地北缘的塔克台断裂,该断裂东部沿和布克赛尔盆地北缘延伸,向西穿过西准噶尔山地经塔城盆地北缘延伸至哈萨克斯坦境内,全长约438km。断裂走向近EW向,延伸至哈萨克斯坦境内转为NW向,主断面北倾,具有逆断层性质。由于境外塔克台断裂几何展布情况不明,本文未展示境外部分。根据断裂几何学展布特征,将该断裂初步划分为东、西两段,东段从布克赛尔盆地北至塔城盆地东北端,全长约163km,走向近EW向;西段从塔城盆地东北端至哈萨克斯坦境内(图 5(a)),全长约275km,走向近EW向,后又转为NW向。
断裂在阿布都拉河一带分为两条,即北支断裂与南支断裂,构成塔尔巴哈台山与塔城盆地的界线。北支断裂在塔城市北喀浪古尔河渠首,断裂在地貌上,呈近EW向的断裂谷地,断裂断错水系西岸,断面北倾,倾角约68°,沿断面发育较厚的红色断层泥。该断裂分布在泥盆系基岩区内,断层两侧泥盆系产状不一致,北盘地层北倾,倾斜相对较缓,而南盘地层南倾,倾斜陡立。断层两侧地层受挤压较破碎,破碎带宽约30m。
南支断裂构成塔城盆地西北边界,分布在山前地带,在塔城市北喀浪古尔河山口处河西岸可见断裂断错了Ⅱ、Ⅲ级河流阶地,并形成清晰的断层陡坎。河流阶地基座为泥盆系,上覆阶地砾石层与黄土层。但在Ⅰ级阶地上,阶地面平坦,未发现断裂断错Ⅰ级阶地形成明显的断层陡坎(图 6(a))。在阿布都拉河河口一带,断裂构成山地与盆地的界线,并分布老断崖(图 6(b))。
3.2 发震构造分析
从图像上看,塔城MS5.2地震等震线长轴走向与断层走向近一致,震中位于塔克台断裂下盘,主断裂发震的可能性相对较小,收集塔城盆地近南北向地震剖面,如图 5所示,剖面显示塔城盆地及邻区发育除塔克台两条活动断裂外,盆地内还发育多条隐伏断层,这些断层均向北倾,在地表呈高角度逆断层性质,推测本次地震发震构造为塔克台断裂不断向盆地方向迁移、扩展形成的一条隐伏断裂(图 7)。由于本次地震震级较小,地震产生的能量不足以使地表发生破裂,所以目前发震断裂仍隐伏于地下,初步认为该地震发震构造仍为塔城盆地北缘塔克台断裂,但需在以后的工作中进一步寻找相关的地质地貌证据。
4. 讨论与建议
(1) 本次地震引起损失的主要原因包括:震区存在大量老旧、自建土木结构和砖木结构房屋,多未经正规设计,地基处理不规范,震前已产生不同程度的纵横墙间裂缝、门(窗)洞角斜裂缝,本次地震使房屋破坏更严重,部分房屋墙体外闪,已不具备居住条件;砖混结构房屋由于采取了一定抗震措施,主要震害为墙体斜裂缝、预制板顶连接处开裂、门(窗)洞角斜裂缝等;除个别近几年修建的办公楼和幼儿园框架结构房屋出现填充墙墙体斜裂缝、填充墙与主体结构裂缝外,其他框架结构房屋完好无损;安居富民房在本次地震中经受住了考验,抗震性能良好,未发生明显破坏。
(2) 根据本次地震现场野外调查工作,结合地震等震线分布情况,初步判定本次地震发震构造为塔克台断裂向盆地方向迁移形成的一条隐伏断裂。
(3) 通过现场调查发现,因常年未经历破坏性地震,震区群众防震减灾意识不强,政府部门应积极引导群众持续推进安居富民工程。同时,新建房屋须结合震区房屋震害特点,选址应避开不利地带,做好地基处理。
致谢: 本文房屋调查及地震地质灾害等相关资料由新疆塔域MS5.2地震现场工作队提供,特此感谢应急队全体工作人员的辛勤工作,同时感谢审稿专家对本文提出的建设性修改意见及建议。 -
表 1 场地模型参数
Table 1. Site model parameters
位置 层数 厚度/m S波波速/(m·s−1) 网格类型 密度/(kg·m−3) 弹性模量E/MPa 静泊松比$ \mathrm{\vartheta } $ 动泊松比$ {\mathrm{\vartheta }}_{\mathrm{d}} $ 盆地内 第1层 30 205.8 CPE4 R 2 120 231 0.444 0.49 第2层 40 300 1 800 453 0.4 — 第3层 30 400 1 900 851 0.4 — 盆地外 200 600 2 000 1 920 0.334 — 表 2 模型参数
Table 2. Model parameter
直径D/m 高度H/m 相对密度Dr 网格类型 单元数/个 天然孔隙比 初始有效围压/kPa 动剪应力比 0.0391 0.08 0.5 C3 D8 R 96 0.885 100 1.05 表 3 子程序参数
Table 3. Subprogram parameters
$ \rho $/(kg·m−3) ${V}_{{\rm{s}}}$/(m·s−1) A/B $ {\mathrm{\vartheta }}_{\mathrm{d}} $/$ \mathrm{\vartheta } $ $ {\gamma }_{0} $ a C1/C2 m/n k/b 2 120 0.08 1.02/0.36 0.49/0.444 0.000 38 0.5 0.73/0.475 0.43/0.62 0.002 5/0.5 表 4 仿真与试验对比
Table 4. Comparison between simulation and experiment
对比结果 试验 仿真 轴向应变峰/% 3.2 2.9 破坏时间/s 70 71.4 -
董菲蕃,金丹丹,陈国兴,2013. 场地条件对地表地震动特征的影响. 防灾减灾工程学报,33(6):712−718.Dong F. F., Jin D. D., Chen G. X. 2013. Effect of site condition on ground motion characteristics. Journal of Disaster Prevention and Mitigation Engineering, 33(6): 712−718.(in Chinese) 董菲蕃,陈国兴,金丹丹,2014. 泉州盆地地震效应特征的一维等效线性和二维非线性分析的比较. 防灾减灾工程学报,34(2):154−160.Dong F. F., Chen G. X., Jin D. D. 2014. Comparison between one-dimensional equivalent linear and two-dimensional nonlinear analysis on seismic effect of Quanzhou basin. Journal of Disaster Prevention and Mitigation Engineering, 34(2): 154−160.(in Chinese) 金丹丹,陈国兴,2012. 福州盆地地震效应特征的一、二维模型对比研究. 土木工程学报,45(S1):48−53.Jin D. D., Chen G. X. 2012. Large-scale two-dimensional nonlinear FE analysis vs. one-dimensional quivalent linearization analysis on seismic effect of Fuzhou Basin. China Civil Engineering Journal, 45(S1): 48−53.(in Chinese) 金丹丹,陈国兴,董菲蕃,2014. 多地貌单元复合场地非线性地震效应特征二维分析. 岩土力学,35(6):1818−1825.Jin D. D., Chen G. X., Dong F. F. 2014. 2D analysis of nonlinear seismic effect characteristics of multi-geomorphic composite site. Rock and Soil Mechanics, 35(6): 1818−1825.(in Chinese) 李雪强,2011. 沉积盆地地震效应研究. 哈尔滨:中国地震局工程力学研究所.Li X. Q.,2011. Study on seismic effect of sedimentary basin. Harbin:Institute of Engineering Mechanics,China Earthquake Administration. (in Chinese). 刘启方,袁一凡,金星等,2006. 近断层地震动的基本特征. 地震工程与工程振动,26(1):1−10.Liu Q. F., Yuan Y. F., Jin X., et al, 2006. Basic characteristics of near-fault ground motion. Earthquake Engineering and Engineering Vibration, 26(1): 1−10.(in Chinese) 刘启方,于彦彦,章旭斌,2013. 施甸盆地三维地震动研究. 地震工程与工程振动,33(4):54−60.Liu Q. F., Yu Y. Y., Zhang X. B. 2013. Three-dimensional ground motion simulation for Shidian Basin. Journal of Earthquake Engineering and Engineering Vibration, 33(4): 54−60.(in Chinese) 刘庆忠,金丹丹,陈国兴等,2015. 河漫滩-阶地复合地形场地的非线性地震反应特征. 应用基础与工程科学学报,23(1):136−144.Liu Q. Z., Jin D. D., Chen G. X., et al, 2015. Nolinear seismic site response characteristics of composite site of alluvial flat and terraces. Journal of Basic Science and Engineering, 23(1): 136−144.(in Chinese) 刘中宪,刘明珍,韩建斌,2017. 近断层沉积盆地强地震动谱元模拟. 世界地震工程,33(4):76−86.Liu Z. X., Liu M. Z., Han J. B. 2017. Spectral-element simulation of strong ground motion in the near-fault alluvial basin. World Earthquake Engineering, 33(4): 76−86.(in Chinese) 孙锐,袁晓铭,2004. 液化土层对地表加速度反应谱的影响. 世界地震工程,20(3):33−38. doi: 10.3969/j.issn.1007-6069.2004.03.006Sun R., Yuan X. M. 2004. Effect of soil liquefaction on response spectrum of surface acceleration. World Earthquake Engineering, 20(3): 33−38.(in Chinese) doi: 10.3969/j.issn.1007-6069.2004.03.006 王海云,谢礼立,2006. 近断层强地震动的特点. 哈尔滨工业大学学报,38(12):2070−2072,2076.Wang H. Y., Xie L. L. 2006. Characteristics of near-fault strong ground motions. Journal of Harbin Institute of Technology, 38(12): 2070−2072,2076.(in Chinese) 张宇翔,袁志祥,2010. 汶川8级地震陕西灾区震害特征分析. 地震研究,33(3):329−335.Zhang Y. X., Yuan Z. X. 2010. Analysis on the characteristics of earthquake damages of the M S8.0 Wenchuan earthquake in the affected area in Shaanxi. Journal of Seismological Research, 33(3): 329−335.(in Chinese) 赵丁凤,阮滨,陈国兴等,2017. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证. 岩土工程学报,39(5):888−895.Zhao D. F., Ruan B., Chen G. X., et al, 2017. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS. Chinese Journal of Geotechnical Engineering, 39(5): 888−895.(in Chinese) Anderson J. G., Bodin P., Brune J. N., et al, 1986. Strong ground motion from the Michoacan, Mexico, earthquake. Science, 233(4786): 1043−1049. Liu Z. X., Qiao Y. F., Cheng X. L., et al, 2023. IBEM-FEM coupling method for full process nonlinear ground motion simulation of near-fault sedimentary basins. Soil Dynamics and Earthquake Engineering, 170: 107916. doi: 10.1016/j.soildyn.2023.107916 Lu R. Q., Jiang C. S., He D. F., et al, 2024. Seismogenic fault of the 2021 MS 6.0 Luxian induced earthquake in the Sichuan Basin, China constrained by high-resolution seismic reflection and dense seismic array. Journal of Structural Geology, 179: 105050. doi: 10.1016/j.jsg.2024.105050 Martin P. P., Seed H. B. 1982. One-dimensional dynamic ground response analyses. Journal of the Geotechnical Engineering Division, 108(7): 935−952. doi: 10.1061/AJGEB6.0001316 -