Nonlinear Seismic Response Analysis of Two-dimensional Depositional Basins
-
摘要: 沉积盆地对地震动具有明显的放大效应。利用ABAQUS软件及二次开发平台,编写了基于Davidenkov骨架曲线的VUMAT子程序,对饱和沉积盆地进行了非线性反应模拟。建立不同基岩面坡度的二维T型沉积盆地,输入4条不同频谱特性及幅值的近断层地震波,研究不同盆地基岩面坡度、饱和介质特性、地震波强度等因素对沉积盆地非线性反应规律的影响。研究结果表明,地震波作用可造成饱和沉积盆地发生局部液化,地震波强度越大,液化区分布范围越广,地表处出现了永久塑性变形;地震波强度的增大导致地表土层发生液化的时间提前,且下层土的液化会减弱地震波的传播速度,导致上层地表土发生液化的时间延后;盆地内地表最不利位置随着基岩面坡度的增大逐渐向中心处移动,不同工况下速度峰值放大系数为1.18~3.33。
-
关键词:
- Davidenkov本构模型 /
- VUMAT /
- 二维非线性分析 /
- 近断层沉积盆地 /
- 场地反应
Abstract: Near fault seismic motion can lead to significant seismic disasters in the near field area, particularly in regions with sedimentary terrain, exacerbating the potential disaster. In this paper, ABAQUS software and secondary development platform are employed to compile VUMAT subroutine based on Davidenkov skeleton curve, to conduct nonlinear simulation of saturated sedimentary basin, and to establish two-dimensional T-shaped Sedimentary basin with different bedrock surface slopes. Four near fault Seismic wave with different spectral characteristics are selected to input the site with different amplitudes, and the nonlinear response of the site under the action of different basin slopes and seismic wave intensities is studied. It is found that seismic wave can cause liquefaction in saturated sedimentary basin. The greater the strength of seismic wave is, the wider the distribution range of liquefaction area is, and permanent plastic deformation occurs on the surface; The increase of seismic wave strength can lead to the advance of liquefaction time of surface soil layer, and the liquefaction of subsoil will weaken the propagation strength of Seismic wave, resulting in the delay of liquefaction time of upper surface soil layer.As the bedrock surface slope increases, the most vulnerable location on the basin's surface shifts toward the center. Furthermore, the amplification coefficient of peak velocity ranges from 1.18 to 3.33 under various working conditions. -
表 1 场地模型参数
Table 1. Site model parameters
位置 层数 厚度/m S波波速/(m·s−1) 网格类型 密度/(kg·m−3) 弹性模量E/MPa 静泊松比$ \mathrm{\vartheta } $ 动泊松比$ {\mathrm{\vartheta }}_{\mathrm{d}} $ 盆地内 第1层 30 205.8 CPE4 R 2 120 231 0.444 0.49 第2层 40 300 1 800 453 0.4 — 第3层 30 400 1 900 851 0.4 — 盆地外 200 600 2 000 1 920 0.334 — 表 2 模型参数
Table 2. Model parameter
直径D/m 高度H/m 相对密度Dr 网格类型 单元数/个 天然孔隙比 初始有效围压/kPa 动剪应力比 0.0391 0.08 0.5 C3 D8 R 96 0.885 100 1.05 表 3 子程序参数
Table 3. Subprogram parameters
$ \rho $/(kg·m−3) ${V}_{{\rm{s}}}$/(m·s−1) A/B $ {\mathrm{\vartheta }}_{\mathrm{d}} $/$ \mathrm{\vartheta } $ $ {\gamma }_{0} $ a C1/C2 m/n k/b 2 120 0.08 1.02/0.36 0.49/0.444 0.000 38 0.5 0.73/0.475 0.43/0.62 0.002 5/0.5 表 4 仿真与试验对比
Table 4. Comparison between simulation and experiment
对比结果 试验 仿真 轴向应变峰/% 3.2 2.9 破坏时间/s 70 71.4 -
董菲蕃,金丹丹,陈国兴,2013. 场地条件对地表地震动特征的影响. 防灾减灾工程学报,33(6):712−718.Dong F. F., Jin D. D., Chen G. X. 2013. Effect of site condition on ground motion characteristics. Journal of Disaster Prevention and Mitigation Engineering, 33(6): 712−718.(in Chinese) 董菲蕃,陈国兴,金丹丹,2014. 泉州盆地地震效应特征的一维等效线性和二维非线性分析的比较. 防灾减灾工程学报,34(2):154−160.Dong F. F., Chen G. X., Jin D. D. 2014. Comparison between one-dimensional equivalent linear and two-dimensional nonlinear analysis on seismic effect of Quanzhou basin. Journal of Disaster Prevention and Mitigation Engineering, 34(2): 154−160.(in Chinese) 金丹丹,陈国兴,2012. 福州盆地地震效应特征的一、二维模型对比研究. 土木工程学报,45(S1):48−53.Jin D. D., Chen G. X. 2012. Large-scale two-dimensional nonlinear FE analysis vs. one-dimensional quivalent linearization analysis on seismic effect of Fuzhou Basin. China Civil Engineering Journal, 45(S1): 48−53.(in Chinese) 金丹丹,陈国兴,董菲蕃,2014. 多地貌单元复合场地非线性地震效应特征二维分析. 岩土力学,35(6):1818−1825.Jin D. D., Chen G. X., Dong F. F. 2014. 2D analysis of nonlinear seismic effect characteristics of multi-geomorphic composite site. Rock and Soil Mechanics, 35(6): 1818−1825.(in Chinese) 李雪强,2011. 沉积盆地地震效应研究. 哈尔滨:中国地震局工程力学研究所.Li X. Q.,2011. Study on seismic effect of sedimentary basin. Harbin:Institute of Engineering Mechanics,China Earthquake Administration. (in Chinese). 刘启方,袁一凡,金星等,2006. 近断层地震动的基本特征. 地震工程与工程振动,26(1):1−10.Liu Q. F., Yuan Y. F., Jin X., et al, 2006. Basic characteristics of near-fault ground motion. Earthquake Engineering and Engineering Vibration, 26(1): 1−10.(in Chinese) 刘启方,于彦彦,章旭斌,2013. 施甸盆地三维地震动研究. 地震工程与工程振动,33(4):54−60.Liu Q. F., Yu Y. Y., Zhang X. B. 2013. Three-dimensional ground motion simulation for Shidian Basin. Journal of Earthquake Engineering and Engineering Vibration, 33(4): 54−60.(in Chinese) 刘庆忠,金丹丹,陈国兴等,2015. 河漫滩-阶地复合地形场地的非线性地震反应特征. 应用基础与工程科学学报,23(1):136−144.Liu Q. Z., Jin D. D., Chen G. X., et al, 2015. Nolinear seismic site response characteristics of composite site of alluvial flat and terraces. Journal of Basic Science and Engineering, 23(1): 136−144.(in Chinese) 刘中宪,刘明珍,韩建斌,2017. 近断层沉积盆地强地震动谱元模拟. 世界地震工程,33(4):76−86.Liu Z. X., Liu M. Z., Han J. B. 2017. Spectral-element simulation of strong ground motion in the near-fault alluvial basin. World Earthquake Engineering, 33(4): 76−86.(in Chinese) 孙锐,袁晓铭,2004. 液化土层对地表加速度反应谱的影响. 世界地震工程,20(3):33−38. doi: 10.3969/j.issn.1007-6069.2004.03.006Sun R., Yuan X. M. 2004. Effect of soil liquefaction on response spectrum of surface acceleration. World Earthquake Engineering, 20(3): 33−38.(in Chinese) doi: 10.3969/j.issn.1007-6069.2004.03.006 王海云,谢礼立,2006. 近断层强地震动的特点. 哈尔滨工业大学学报,38(12):2070−2072,2076.Wang H. Y., Xie L. L. 2006. Characteristics of near-fault strong ground motions. Journal of Harbin Institute of Technology, 38(12): 2070−2072,2076.(in Chinese) 张宇翔,袁志祥,2010. 汶川8级地震陕西灾区震害特征分析. 地震研究,33(3):329−335.Zhang Y. X., Yuan Z. X. 2010. Analysis on the characteristics of earthquake damages of the M S8.0 Wenchuan earthquake in the affected area in Shaanxi. Journal of Seismological Research, 33(3): 329−335.(in Chinese) 赵丁凤,阮滨,陈国兴等,2017. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证. 岩土工程学报,39(5):888−895.Zhao D. F., Ruan B., Chen G. X., et al, 2017. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS. Chinese Journal of Geotechnical Engineering, 39(5): 888−895.(in Chinese) Anderson J. G., Bodin P., Brune J. N., et al, 1986. Strong ground motion from the Michoacan, Mexico, earthquake. Science, 233(4786): 1043−1049. Liu Z. X., Qiao Y. F., Cheng X. L., et al, 2023. IBEM-FEM coupling method for full process nonlinear ground motion simulation of near-fault sedimentary basins. Soil Dynamics and Earthquake Engineering, 170: 107916. doi: 10.1016/j.soildyn.2023.107916 Lu R. Q., Jiang C. S., He D. F., et al, 2024. Seismogenic fault of the 2021 MS 6.0 Luxian induced earthquake in the Sichuan Basin, China constrained by high-resolution seismic reflection and dense seismic array. Journal of Structural Geology, 179: 105050. doi: 10.1016/j.jsg.2024.105050 Martin P. P., Seed H. B. 1982. One-dimensional dynamic ground response analyses. Journal of the Geotechnical Engineering Division, 108(7): 935−952. doi: 10.1061/AJGEB6.0001316