Statistical Study on Characteristics of Spectral Accelerations Normalized by PGA on Site Classifications I, II and III in China
-
摘要: 近30年来全球强震动记录,尤其是大震记录的数量显著增加,有必要对近40年前基于仅300余条强震动记录获得的地震动加速度反应谱特征进行检验与修正。基于NGA-West2数据库中全球范围内3 584条强震动记录的统计发现,我国场地类别划分标准下Ⅰ、Ⅱ、Ⅲ类场地上地面峰值加速度(PGA)归一化反应谱(阻尼比5%)与地震震级密切相关,与震源距离、地震动强度等因素的相关性相对较弱;我国现行抗震规范中设计谱低估了地震震级对反应谱谱型的影响,第4段的直线下降模式也与统计特征不符;在主要受大震控制的地区,设计谱特征周期取值过小而偏于冒险。参考中欧美抗震规范中的设计谱规准化原则,给出了适用于我国Ⅰ、Ⅱ、Ⅲ类建筑场地上的设计谱修正建议,主要改变为延长了受大震控制地区设计地震动分组的特征周期,并调整了下降段的下降模式与衰减指数,以更可靠地反映地震动反应谱的中长周期特性。Abstract: Global strong-motion records, particularly those obtained in great earthquakes, increased significantly in the last three decades, which made it necessary to verify and rectify the statistical characteristics of ground motion spectral accelerations obtained about forty years ago based on only about 300 sets of strong-motion records. Based on statistics of 3584 strong-motion records worldwide in NGA-West2 database, it was found that the spectral accelerations (damping ratio=0.05) normalized by peak ground acceleration (PGA) on site classifications I, II and III in China's site classification standards, are closely correlated to earthquake magnitudes, while the correlation with factors such as source distances or ground motion strengths is relatively weak. The current Chinese seismic codes underestimated the impacts of earthquake magnitude on the shapes of spectral accelerations, and the linear descent pattern in the fourth segment was also inconsistent with statistical characteristics. In areas mainly controlled by large earthquakes, the characteristic periods (i.e. the ending period of the constant spectral acceleration segment) were underestimated and tended to be risky. Referring to the standardization principals of design spectra in seismic codes of China, EU and US, suggestions for modifying design spectra applicable to site classifications I, II and III in China were proposed. The major changes included extending the characteristic periods of design ground motion groups in areas controlled by large earthquakes, and adjusting the descent mode and attenuation exponentials of the descent segments to more reliably reflect the medium to long period characteristics of ground motion spectral accelerations.
-
Key words:
- Strong motion /
- Seismic site effect /
- Site condition /
- Seismic design spectrum /
- Spectral acceleration
-
表 1 设计谱修正建议方案的参数值(阻尼比5%)
Table 1. Modified parameters for seismic design spectra proposed in this study(Damping ratio=0.05)
组别 βmax T1/s T2/s $ {\gamma _{\text{1}}} $ $ {\gamma _{\text{2}}} $ Ⅰ类场地第1组 2.20 0.30 1.00 1.00 2.00 Ⅰ类场地第2组 2.20 0.40 1.40 1.00 1.50 Ⅰ类场地第3组 2.20 0.55 2.20 0.80 0.90 Ⅱ类场地第1组 2.25 0.35 1.00 1.00 1.80 Ⅱ类场地第2组 2.25 0.45 1.40 0.90 1.30 Ⅱ类场地第3组 2.45 0.65 — 0.70 — Ⅲ类场地第1组 2.30 0.40 1.60 1.00 1.50 Ⅲ类场地第2组 2.30 0.60 2.40 0.90 1.10 Ⅲ类场地第3组 2.55 1.00 — 0.65 — -
陈国兴, 2003. 中国建筑抗震设计规范的演变与展望. 防灾减灾工程学报, 23(1): 102—113 doi: 10.3969/j.issn.1672-2132.2003.01.018Chen G. X. , 2003. The evolution and prospect of the code for seismic design of buildings in China. Journal of Disaster Prevention and Mitigation Engineering, 23(1): 102—113. (in Chinese) doi: 10.3969/j.issn.1672-2132.2003.01.018 耿淑伟, 2005. 抗震设计规范中地震作用的规定. 哈尔滨: 中国地震局工程力学研究所, 44—69Geng S. W., 2005. Strong ground motion input parameter for seismic design. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 44—69. (in Chinese) 耿淑伟, 陶夏新, 王国新, 2008. 对设计反应谱长周期段取值规定的探讨. 世界地震工程, 24(2): 111—116Geng S. W. , Tao X. X. , Wang G. X. , 2008. Study on the provisions for the values of design response spectra in long period section. World Earthquake Engineering, 24(2): 111—116. (in Chinese) 耿淑伟, 赵万松, 高永新, 2018. 基于设计地震分组的反应谱特征周期研究. 合肥工业大学学报(自然科学版), 41(2): 211—215 doi: 10.3969/j.issn.1003-5060.2018.02.014Geng S. W. , Zhao W. S. , Gao Y. X. , 2018. Research on characteristic periods of response spectrum based on classification of design earthquake. Journal of Hefei University of Technology, 41(2): 211—215. (in Chinese) doi: 10.3969/j.issn.1003-5060.2018.02.014 郭晓云, 薄景山, 巴文辉, 2013. 汶川地震反应谱特征周期统计分析. 地震工程与工程振动, 33(2): 55—59 doi: 10.13197/j.eeev.2013.02.57.guoxy.007Guo X. Y. , Bo J. S. , Ba W. H. , 2013. Statistical analysis of characteristic period of response spectrum based on Wenchuan strong ground motion. Earthquake Engineering and Engineering Vibration, 33(2): 55—59. (in Chinese) doi: 10.13197/j.eeev.2013.02.57.guoxy.007 郭玉学, 王治山, 1993. 中国核电厂抗震设计用标准反应谱. 世界地震工程, 9(2): 31—36, 18. 胡聿贤, 张继栋, 邹夕林等, 1982. 基岩地震动参数与震级和距离的关系. 地震学报, 4(2): 199—207Hu Y. X. , Zhang J. D. , Zou X. L. , et al, 1982. Functional relations of bedrock motion parameters with earthquake magnitude and distance. Acta Seismologica Sinica, 4(2): 199—207. (in Chinese) 刘恢先, 1958. 论地震力. 土木工程学报, 5(2): 86—106Liu H. X. , 1958. Seismic forces on structures. China Civil Engineering Journal, 5(2): 86—106. (in Chinese) 罗开海, 黄世敏, 2015. 《建筑抗震设计规范》发展历程及展望. 工程建设标准化, (7): 73—78. doi: 10.13924/j.cnki.cecs.2015.07.007 覃锋, 徐龙军, 谢礼立, 2011. 基于强震记录的核电厂抗震标准反应谱研究. 地震学报, 33(1): 103—113 doi: 10.3969/j.issn.0253-3782.2011.01.009Qin F. , Xu L. J. , Xie L. L. , 2011. On standard response spectrum for nuclear power plant based on strong earthquake ground motions. Acta Seismologica Sinica, 33(1): 103—113. (in Chinese) doi: 10.3969/j.issn.0253-3782.2011.01.009 王苏阳, 2017. 基于日本KiK-net地震动数据的场地反应研究. 哈尔滨: 中国地震局工程力学研究所.Wang S. Y., 2017. Study on site effect using ground motion data from KiK-net in Japan. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese) 王亚勇, 戴国莹, 2010. 《建筑抗震设计规范》的发展沿革和最新修订. 建筑结构学报, 31(6): 7—16Wang Y. Y. , Dai G. Y. , 2010. Evolution and present updation of ‘Code for seismic design of buildings’. Journal of Building Structures, 31(6): 7—16. (in Chinese) 王亚勇, 2011. 国家标准《建筑抗震设计规范》(GB50011-2010)疑问解答(三). 建筑结构, 41(2): 137—141. 王玉石, 李小军, 赵雷等, 2016. 基于统计的核电厂地震裕量分析建议反应谱. 核动力工程, 37(3): 43—46 doi: 10.13832/j.jnpe.2016.03.0043Wang Y. S. , Li X. J. , Zhao L. , et al. , 2016. Suggested spectral accelerations for seismic margin assessments of nuclear power plants based on statistics. Nuclear Power Engineering, 37(3): 43—46 (in Chinese) doi: 10.13832/j.jnpe.2016.03.0043 王玉石, 李小军, 刘爱文等, 2020. 基于统计数据的非基岩核电厂抗震设计谱研究. 核动力工程, 41(3): 115—120Wang Y. S. , Li X. J. , Liu A. W. , et al. , 2020. Study on spectral accelerations for seismic design of nuclear power plants on non-bedrock sites based on statistical data. Nuclear Power Engineering, 41(3): 115-120. (in Chinese) 谢礼立, 周雍年, 胡成祥等, 1990. 地震动反应谱的长周期特性. 地震工程与工程振动, 10(1): 1—20 doi: 10.13197/j.eeev.1990.01.001Xie L. L. , Zhou Y. N. , Hu C. X. , et al, 1990. Characteristics of response spectra of long-period earthquake ground motion. Earthquake Engineering and Engineering Vibration, 10(1): 1—20. (in Chinese) doi: 10.13197/j.eeev.1990.01.001 徐龙军, 覃锋, 孙琼等, 2011. 分区优化核电站抗震设计谱. 天津大学学报, 44(8): 719—726 doi: 10.3969/j.issn.0493-2137.2011.08.011Xu L. J. , Qin F. , Sun Q. , et al. , 2011. Divisional optimized aseismic design spectra for nuclear power plant. Journal of Tianjin University, 44(8): 719—726. (in Chinese) doi: 10.3969/j.issn.0493-2137.2011.08.011 尤红兵, 赵凤新, 2014. 特高压电气设备抗震设计反应谱特征周期取值研究. 震灾防御技术, 9(2): 171—181 doi: 10.3969/j.issn.1673-5722.2014.02.002You H. B. , Zhao F. X. , 2014. Characteristic period value of seismic design response spectrum of UHV electrical equipments. Technology for Earthquake Disaster Prevention, 9(2): 171—181. (in Chinese) doi: 10.3969/j.issn.1673-5722.2014.02.002 赵斌, 王亚勇, 2003. 关于《建筑抗震设计规范》GB50011-2001中设计反应谱的几点讨论. 工程抗震, 25(1): 12-14, 29Zhao B. , Wang Y. Y. , 2003. Discussions on the design response spectrum in code for seismic design of buildings GB50011-2001. Earthquake Resistant Engineering, 25(1): 12—14, 29. (in Chinese) 赵佳祥, 2019. 基于强震动记录统计的归一化加速度反应谱研究. 三河: 防灾科技学院. Zhao J. X. , 2019. Statistical Analysis of normalized acceleration response spectrum based on strong motion record. Sanhe: Institute of Disaster Prevention. (in Chinese) 赵万松, 耿淑伟, 董满生, 2017. 抗震设计反应谱特征周期研究. 地震工程学报, 39(3): 502—508 doi: 10.3969/j.issn.1000-0844.2017.03.0502Zhao W. S. , Geng S. W. , Dong M. S. , 2017. Research on characteristic periods of seismic design response spectrum. China Earthquake Engineering Journal, 39(3): 502—508. (in Chinese) doi: 10.3969/j.issn.1000-0844.2017.03.0502 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社, 18—35Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press, 18—35. (in Chinese) 周锡元, 王广军, 苏经宇, 1984. 场地分类和平均反应谱. 岩土工程学报, 6(5): 59—68 doi: 10.3321/j.issn:1000-4548.1984.05.007Zhou X. Y. , Wang G. J. , Su J. Y. , 1984. Site classification and average response spectra. Chinese Journal of Geotechnical Engineering, 6(5): 59—68. (in Chinese) doi: 10.3321/j.issn:1000-4548.1984.05.007 周锡元, 齐微, 徐平等, 2006. 震级、震中距和场地条件对反应谱特性影响的统计分析. 北京工业大学学报, 32(2): 97—103 doi: 10.3969/j.issn.0254-0037.2006.02.001Zhou X. Y. , Qi W. , Xu P. , et al. , 2006. Statistical analysis on the influence of magnitude, distance and site condition on response spectra. Journal of Beijing University of Technology, 32(2): 97—103. (in Chinese) doi: 10.3969/j.issn.0254-0037.2006.02.001 周雍年, 1984. 震级、震中距和场地条件对地面运动反应谱的影响. 地震工程与工程振动, 4(4): 14—21 doi: 10.13197/j.eeev.1984.04.002Zhou Y. N. , 1984. The effects of the seismic magnitudes, the epicentral distances and local soil conditions on the response spectra. Earthquake Engineering and Engineering Vibration, 4(4): 14—21. (in Chinese) doi: 10.13197/j.eeev.1984.04.002 周雍年, 周正华, 于海英, 2004. 设计反应谱长周期区段的研究. 地震工程与工程振动, 24(2): 15—18 doi: 10.3969/j.issn.1000-1301.2004.02.003Zhou Y. N. , Zhou Z. H. , Yu H. Y. , 2004. A study on long period portion of design spectra. Earthquake Engineering and Engineering Vibration, 24(2): 15—18. (in Chinese) doi: 10.3969/j.issn.1000-1301.2004.02.003 Biot M. A. , 1941. A mechanical analyzer for the prediction of earthquake stresses. Bulletin of the Seismological Society of America, 31(2): 151—171. doi: 10.1785/BSSA0310020151 Boore D. M. , 2004. Estimating V̄s(30) (or NEHRP site classes) from shallow velocity models (depths < 30 m). Bulletin of the Seismological Society of America, 94(2): 591—597. doi: 10.1785/0120030105 Building Seismic Safety Council of the National Institute of Building Sciences, 2004. NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450): part 1: provisions. Washington, D. C. : Federal Emergency Management Agency, 17—49. European Committee for Standardization, 2004. EN 1998—1 Eurocode 8: design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. Brussels: European Committee for Standardization. Housner G. W. , 1959. Behavior of structures during earthquakes. Journal of the Engineering Mechanics Division, 85(4): 109—129. doi: 10.1061/JMCEA3.0000102 Newmark N. M. , Blume J. A. , Kapur K. K. , 1973. Seismic design spectra for nuclear power plants. Journal of the Power Division, 99(2): 287—303. doi: 10.1061/JPWEAM.0000753 Seed H. B. , Ugas C. , Lysmer J. , 1976. Site-dependent spectra for earthquake-resistant design. Bulletin of the Seismological Society of America, 66(1): 221—243. doi: 10.1785/BSSA0660010221