• ISSN 1673-5722
  • CN 11-5429/P

外包钢套加固震损双层高架桥框架式桥墩抗震性能评估与参数分析

许成祥 吴永康 王理

许成祥,吴永康,王理,2023. 外包钢套加固震损双层高架桥框架式桥墩抗震性能评估与参数分析. 震灾防御技术,18(4):821−832. doi:10.11899/zzfy20230416. doi: 10.11899/zzfy20230416
引用本文: 许成祥,吴永康,王理,2023. 外包钢套加固震损双层高架桥框架式桥墩抗震性能评估与参数分析. 震灾防御技术,18(4):821−832. doi:10.11899/zzfy20230416. doi: 10.11899/zzfy20230416
Xu Chengxiang, Wu Yongkang, Wang Li. Parameter Analysis and Evaluation on Seismic Performance of Seismic-damaged Frame Piers of Double-deck Viaduct Strengthened by Steel Jacket[J]. Technology for Earthquake Disaster Prevention, 2023, 18(4): 821-832. doi: 10.11899/zzfy20230416
Citation: Xu Chengxiang, Wu Yongkang, Wang Li. Parameter Analysis and Evaluation on Seismic Performance of Seismic-damaged Frame Piers of Double-deck Viaduct Strengthened by Steel Jacket[J]. Technology for Earthquake Disaster Prevention, 2023, 18(4): 821-832. doi: 10.11899/zzfy20230416

外包钢套加固震损双层高架桥框架式桥墩抗震性能评估与参数分析

doi: 10.11899/zzfy20230416
基金项目: 湖北省自然科学基金(创新群体)(2015CFA029)
详细信息
    作者简介:

    许成祥,男,生于1965年。教授。主要从事钢-混凝土组合结构抗震性能、工程结构损伤识别与修复研究。E-mail:cx_xu@sina.com

Parameter Analysis and Evaluation on Seismic Performance of Seismic-damaged Frame Piers of Double-deck Viaduct Strengthened by Steel Jacket

  • 摘要: 基于《公路桥梁抗震设计规范》“两阶段”设防原则,采用SAP2000有限元软件建立震损加固桥墩数值模型,通过构建与设防水准地震相匹配的结构性能水准,选取基底剪力和墩顶位移作为结构性能评价指标,建立基于能力需求比的双层高架桥墩抗震性能评估流程,从抗震性能和损伤修复效果角度,对外包钢套含钢量和强度的影响进行分析。研究结果表明,中度损伤试件经外包钢套加固后基底剪力和墩顶位移能力需求比分别提高了76.72%、62.93%,重度损伤试件经外包钢套加固后基底剪力和墩顶位移能力需求比分别提高了62.98%、51.94%;当外包钢套含钢量ρ<0.98%时,重度损伤加固试件基底剪力能力需求比呈负向增长,承载能力修复效果不理想;当外包钢套含钢量ρ>2.08%时,中度损伤及重度损伤加固试件墩顶位移能力需求比提高率大于基底剪力,此时变形能力修复效果优于承载能力;提高外包钢套强度显著增强了中度损伤和重度损伤加固试件承载能力,但变形能力基本不提高。
  • 图  1  试件配筋设计(单位:mm)

    Figure  1.  Reinforcement design of specimen (Unit: mm)

    图  2  试件加固设计(单位:mm)

    Figure  2.  Reinforcement design of specimen (Unit: mm)

    图  3  试验加载装置

    Figure  3.  Test loading device

    图  4  试验加载制度

    Figure  4.  Test loading system

    图  5  整体单元布置

    Figure  5.  Overall unit layout

    图  6  截面纤维划分

    Figure  6.  Sectional fiber division

    图  7  模拟与试验结果对比

    Figure  7.  Comparison of simulation and test results

    图  8  塑性铰编号

    Figure  8.  Plastic hinge number

    图  9  塑性铰区截面弯矩M3-转角R3关系曲线

    Figure  9.  Curve of plastic hinge zone for section bending moment M3 and rotation angle R3

    图  10  规范反应谱

    Figure  10.  Specification response spectrum

    图  11  基于能力需求比的抗震性能评估流程

    Figure  11.  Seismic performance evaluation process based on capacity-demand ratio

    图  12  不同外包钢套含钢量下能力需求比曲线

    Figure  12.  Capacity requirements ratio curve

    图  13  不同外包钢套含钢量下能力需求比提高率曲线

    Figure  13.  Increase rate curve of capability requirement ratio

    图  14  不同外包钢套强度等级下能力需求比曲线

    Figure  14.  Capacity requirements ratio curve

    图  15  不同外包钢套强度等级下能力需求比提高率曲线

    Figure  15.  Increase rate curve of capacity requirement ratio

    表  1  试件预损参数

    Table  1.   Pre-damage parameters of specimens

    试件编号地震损伤程度预损加载位移/mm加固状态
    FP-0(对比试件)0
    FP-10外包钢套加固
    FP-2中度36外包钢套加固
    FP-3重度63外包钢套加固
    下载: 导出CSV

    表  2  钢材力学性能

    Table  2.   Measured mechanical properties of steel

    钢材名称钢材型号屈服强度/MPa极限强度/MPa弹性模量/ MPa
    箍筋HPB300279.3478.62.1×105
    纵筋HRB400377.5576.82.0×105
    角钢L50×5279.3478.62.1×105
    缀板−40×4369.8569.42.1×105
    下载: 导出CSV

    表  3  约束混凝土本构参数

    Table  3.   Constitutive parameters of confined concrete

    加固状态约束水平有效约束系数ue有效约束应力fl抗压强度提高系数γ峰值应变提高系数β
    未加固墩柱无约束
    箍筋0.2680.291.081.40
    加固墩柱外包钢套0.4781.151.312.55
    外包钢套+箍筋0.2681.541.403.00
    下载: 导出CSV

    表  4  损伤折减系数

    Table  4.   Damage reduction coefficient

    试件编号损伤程度损伤指数Dm强度折减系数αF刚度折减系数αk
    FP-2中度损伤0.440.880.38
    FP-3重度损伤0.810.610.23
    下载: 导出CSV

    表  5  E2水准地震动参数

    Table  5.   E2 level ground motion parameters

    名称时间间隔/s有效持续时间/s有效峰值加速度/g调幅系数
    RG10.01025.000.3501.00
    RG20.01030.000.3501.00
    GM10.00531.400.0536.60
    GM20.01042.350.1672.09
    GM30.01033.500.0724.86
    GM40.02028.220.1322.65
    GM50.00538.400.1442.43
    下载: 导出CSV

    表  6  结构性能目标

    Table  6.   Structural performance objectives

    地震设防水准结构性能水准结构损伤状态损伤定性描述结构性能状态损伤定量描述
    E1中等/可修复损伤表层混凝土发生剥落稍加修理即可继续使用表层混凝土达到剥落应变时的
    截面初始塑性转角Rspall
    E2局部失效/倒塌机制核心区混凝土压酥破坏不出现倒塌,保证生命安全核心区混凝土达到极限压应变
    时的截面容许塑性转角Rlimit
    下载: 导出CSV

    表  7  双设防水准下的能力需求比

    Table  7.   Capacity requirements ratio at double defence levels

    试件编号E1地震设防水准下的
    基底剪力能力需求比
    E2地震设防水准下的
    墩顶位移能力需求比
    FP-02.323.35
    FP-15.147.56
    FP-24.105.46
    FP-33.785.09
    下载: 导出CSV
  • 陈林之, 蒋欢军, 吕西林, 2010. 修正的钢筋混凝土结构Park-Ang损伤模型. 同济大学学报(自然科学版), 38(8): 1103—1107

    Chen L. Z. , Jiang H. J. , Lyu X. L. , 2010. Modified Park-Ang damage model for reinforced concrete structures. Journal of Tongji University (Natural Science), 38(8): 1103—1107. (in Chinese)
    陈宗平, 周春恒, 李志彬, 2019. 角钢螺旋筋复合约束混凝土组合柱轴压性能及承载力计算. 土木工程学报, 52(1): 8—19 doi: 10.15951/j.tmgcxb.2019.01.002

    Chen Z. P. , Zhou C. H. , Li Z. B. , 2019. Axial compressive behavior and load-bearing capacity of concrete column confined with steel angle and circular spiral. China Civil Engineering Journal, 52(1): 8—19. (in Chinese) doi: 10.15951/j.tmgcxb.2019.01.002
    邓江东, 宗周红, 黎雅乐等, 2013. 粘钢加固损伤混凝土箱型桥墩的抗震性能Ⅱ: 动力响应数值分析. 东南大学学报(自然科学版), 43(6): 1280—1287

    Deng J. D. , Zong Z. H. , Li Y. L. , et al. , 2013. Anti-seismic properties of damaged concrete bridge piers with hollow cross-section strengthened with adhering steel platesⅡ: numerical analysis on seismic dynamic responses. Journal of Southeast University (Natural Science Edition), 43(6): 1280—1287. (in Chinese)
    李磊, 罗光喜, 王卓涵等, 2020. 震损钢筋混凝土柱剩余能力的数值模型. 工程力学, 37(12): 52—67 doi: 10.6052/j.issn.1000-4750.2019.12.0789

    Li L. , Luo G. X. , Wang Z. H. , et al. , 2020. Numerical model for the residual seismic capacity of seismically damaged reinforced concrete columns. Engineering Mechanics, 37(12): 52—67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0789
    刘杰东, 2015. 震损钢筋混凝土框架滞回模型研究. 重庆: 重庆大学.

    Liu J. D., 2015. Research on modeling of hysteretic characteristics of RC frames damaged during earthquake. Chongqing: Chongqing University. (in Chinese)
    刘黎明, 徐超, 卜春尧等, 2021. 双向水平地震动作用对某钢筋混凝土连续梁桥易损性的影响. 震灾防御技术, 16(4): 671—679 doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008

    Liu L. M. , Xu C. , Bu C. Y. , et al. , 2021. Influence of bi-directional horizontal ground motion on the vulnerability of a reinforced concrete continuous beam bridge. Technology for Earthquake Disaster Prevention, 16(4): 671—679. (in Chinese) doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008
    彭天波, 李建中, 胡世德等, 2004. 双层高架桥的抗震性能. 同济大学学报(自然科学版), 32(10): 1355—1359

    Peng T. B. , Li J. Z. , Hu S. D. , et al. , 2004. Seismic performance of double-deck viaduct. Journal of Tongji University (Natural Science), 32(10): 1355—1359. (in Chinese)
    司炳君, 孙治国, 杜修力等, 2011. 钢筋混凝土桥墩地震弯剪破坏机理与震后快速修复技术研究. 土木工程学报, 44(7): 90—99 doi: 10.15951/j.tmgcxb.2011.07.011

    Si B. J. , Sun Z. G. , Du X. L. , et al. , 2011. Study on the seismic flexural-shear damage mechanisms and rapid repair techniques for earthquake damaged bridge piers. China Civil Engineering Journal, 44(7): 90—99. (in Chinese) doi: 10.15951/j.tmgcxb.2011.07.011
    苏佶智, 刘伯权, 宋猛等, 2021. 基于应变能耗储的钢筋混凝土框架结构地震损伤演化研究. 震灾防御技术, 16(3): 533—543 doi: 10.11899/zzfy20210313

    Su J. Z. , Liu B. Q. , Song M. , et al. , 2021. Research on seismic damage evolution of reinforced concrete frame structures based on strain-energy consumption-storage theory. Technology for Earthquake Disaster Prevention, 16(3): 533—543. (in Chinese) doi: 10.11899/zzfy20210313
    孙治国, 管璐, 赵泰儀等, 2020. CFRP修复震后RC桥墩分析模型与抗震性能. 应用基础与工程科学学报, 28(4): 878—889 doi: 10.16058/j.issn.1005-0930.2020.04.011

    Sun Z. G. , Guan L. , Zhao T. Y. , et al. , 2020. Analysis model and seismic behavior of repaired RC bridge piers after earthquakes by using CFRP. Journal of Basic Science and Engineering, 28(4): 878—889. (in Chinese) doi: 10.16058/j.issn.1005-0930.2020.04.011
    许成祥, 王粘锦, 2021. 双层高架桥框架式桥墩地震损伤试验. 土木工程与管理学报, 38(5): 49—56 doi: 10.13579/j.cnki.2095-0985.2021.05.008

    Xu C. X. , Wang Z. J. , 2021. Experimental on seismic damage of frame piers of double-deck viaduct. Journal of Civil Engineering and Management, 38(5): 49—56. (in Chinese) doi: 10.13579/j.cnki.2095-0985.2021.05.008
    张洁, 李建中, 管仲国, 2012. 双层高架桥拟静力试验研究. 结构工程师, 28(6): 128—133 doi: 10.3969/j.issn.1005-0159.2012.06.023

    Zhang J. , Li J. Z. , Guan Z. G. , 2012. Pseudo-static test study on double-deck viaducts. Structural Engineers, 28(6): 128—133. (in Chinese) doi: 10.3969/j.issn.1005-0159.2012.06.023
    张洁, 管仲国, 李建中, 2017. 双层高架桥梁框架墩抗震性能试验研究. 工程力学, 34(2): 120—128 doi: 10.6052/j.issn.1000-4750.2015.07.0557

    Zhang J. , Guan Z. G. , Li J. Z. , 2017. Experimental research on seismic peformance of frame piers of double-deck viaducts. Engineering Mechanics, 34(2): 120—128. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.07.0557
    中华人民共和国交通运输部, 2020. JTG/T 2231-01—2020 公路桥梁抗震设计规范. 北京: 人民交通出版社.

    Ministry of Transport of the People's Republic of China, 2020. JTG/T 2231-01—2020 Specifications for seismic design of highway bridges. Beijing: China Communications Press. (in Chinese)
    中华人民共和国住房和城乡建设部, 2012. CJJ 166—2011 城市桥梁抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2012. CJJ 166—2011 Code for seismic design of urban bridges. Beijing: China Architecture & Building Press. (in Chinese)
    钟菊芳, 胡晓, 易立新等, 2006. 最大峰值加速度与有效峰值加速度的大小比例关系及影响因素探讨. 世界地震工程, 22(2): 34—38 doi: 10.3969/j.issn.1007-6069.2006.02.007

    Zhong J. F. , Hu X. , Yi L. X. , et al. , 2006. Study on relations of effective peak acceleration and peak ground acceleration. World Earthquake Engineering, 22(2): 34—38. (in Chinese) doi: 10.3969/j.issn.1007-6069.2006.02.007
    周旺旺, 刘德稳, 赵洁等, 2022. 考虑土-结构作用的层间隔震结构三维地震响应. 科学技术与工程, 22(6): 2394—2400 doi: 10.3969/j.issn.1671-1815.2022.06.032

    Zhou W. W. , Liu D. W. , Zhao J. , et al. , 2022. Effect of soil-structure layer isolation structural three-dimensional seismic response. Science Technology and Engineering, 22(6): 2394—2400. (in Chinese) doi: 10.3969/j.issn.1671-1815.2022.06.032
    卓卫东, 曾武华, 2015. 矩形RC桥墩变形能力概率模型. 工程力学, 32(1): 57—63, 71

    Zhuo W. D. , Zeng W. H. , 2015. Probabilistic deformation capacity model for rectangular RC bridge columns. Engineering Mechanics, 32(1): 57—63, 71. (in Chinese)
    Chai Y. H. , 1996. An analysis of the seismic characteristics of steel-jacketed circular bridge columns. Earthquake Engineering & Structural Dynamics, 25(2): 149—161.
    Deng J. , Liu T. H. , Xie W. Z. , et al. , 2015. Study on repaired earthquake-damaged bridge piers under seismic load. Advances in Materials Science and Engineering, 2015: 295392.
    He R. L. , Sneed L. H. , Belarbi A. , 2013. Rapid repair of severely damaged RC columns with different damage conditions: an experimental study. International Journal of Concrete Structures and Materials, 7(1): 35—50. doi: 10.1007/s40069-013-0030-7
    He R. L. , Yang Y. , Sneed L. H. , 2015. Seismic repair of reinforced concrete bridge columns: review of research findings. Journal of Bridge Engineering, 20(15): 04015015.
    Hose Y. , Silva P. , Seible F. , 2000. Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads. Earthquake Spectra, 16(2): 413—442. doi: 10.1193/1.1586119
    Khan Q. U. Z. , Ahmad A. , Mehboob S. , et al. , 2021. Energy dissipation characteristics of retrofitted damaged low-strength concrete bridge pier. Bridge Engineering, 174(2): 148—156.
    Montuori R. , Piluso V. , 2009. Reinforced concrete columns strengthened with angles and battens subjected to eccentric load. Engineering Structures, 31(2): 539—550. doi: 10.1016/j.engstruct.2008.10.005
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  8
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回