Parameter Analysis and Evaluation on Seismic Performance of Seismic-damaged Frame Piers of Double-deck Viaduct Strengthened by Steel Jacket
-
摘要: 基于《公路桥梁抗震设计规范》“两阶段”设防原则,采用SAP2000有限元软件建立震损加固桥墩数值模型,通过构建与设防水准地震相匹配的结构性能水准,选取基底剪力和墩顶位移作为结构性能评价指标,建立基于能力需求比的双层高架桥墩抗震性能评估流程,从抗震性能和损伤修复效果角度,对外包钢套含钢量和强度的影响进行分析。研究结果表明,中度损伤试件经外包钢套加固后基底剪力和墩顶位移能力需求比分别提高了76.72%、62.93%,重度损伤试件经外包钢套加固后基底剪力和墩顶位移能力需求比分别提高了62.98%、51.94%;当外包钢套含钢量ρ<0.98%时,重度损伤加固试件基底剪力能力需求比呈负向增长,承载能力修复效果不理想;当外包钢套含钢量ρ>2.08%时,中度损伤及重度损伤加固试件墩顶位移能力需求比提高率大于基底剪力,此时变形能力修复效果优于承载能力;提高外包钢套强度显著增强了中度损伤和重度损伤加固试件承载能力,但变形能力基本不提高。Abstract: Based on the “ two-stage ” fortification principle of bridge specification, SAP2000 finite element software was used to establish the numerical model of seismic damage reinforced piers. By constructing the structural performance level matched with the fortification level earthquake, the base shear force and the displacement of pier top were selected as the structural performance evaluation indexes, and the seismic performance evaluation process of double-layer viaduct pier based on the capacity-demand ratio was established. From the perspective of seismic performance and damage repair effect, the parametric influence analysis on the content of outsourcing steel and the strength of outsourcing steel sleeve was completed. The results show that the base shear and pier top displacement capacity requirements of the moderate damage reinforced specimens are increased by 76.72 % and 62.93 % respectively, and the severe damage reinforced specimens are increased by 62.98 % and 51.94 % respectively. When the outsourcing steel content ρ < 0.98 %, the base shear capacity demand ratio of severe damage reinforced specimens increases negatively, and the bearing capacity repair effect is not ideal. When ρ > 2.08 %, the increase rate of displacement capacity demand ratio of moderate damage and severe damage reinforced specimens is greater than that of base shear, and the repair effect of deformation capacity is better than that of bearing capacity. The bearing capacity of the strengthened specimens with moderate and severe damage is significantly enhanced by increasing the strength of the wrapped steel sleeve, but the deformation capacity is basically not improved.
-
表 1 试件预损参数
Table 1. Pre-damage parameters of specimens
试件编号 地震损伤程度 预损加载位移/mm 加固状态 FP-0(对比试件) — 0 — FP-1 — 0 外包钢套加固 FP-2 中度 36 外包钢套加固 FP-3 重度 63 外包钢套加固 表 2 钢材力学性能
Table 2. Measured mechanical properties of steel
钢材名称 钢材型号 屈服强度/MPa 极限强度/MPa 弹性模量/ MPa 箍筋 HPB300 279.3 478.6 2.1×105 纵筋 HRB400 377.5 576.8 2.0×105 角钢 L50×5 279.3 478.6 2.1×105 缀板 −40×4 369.8 569.4 2.1×105 表 3 约束混凝土本构参数
Table 3. Constitutive parameters of confined concrete
加固状态 约束水平 有效约束系数ue 有效约束应力fl 抗压强度提高系数γ 峰值应变提高系数β 未加固墩柱 无约束 — — — — 箍筋 0.268 0.29 1.08 1.40 加固墩柱 外包钢套 0.478 1.15 1.31 2.55 外包钢套+箍筋 0.268 1.54 1.40 3.00 表 4 损伤折减系数
Table 4. Damage reduction coefficient
试件编号 损伤程度 损伤指数Dm 强度折减系数αF 刚度折减系数αk FP-2 中度损伤 0.44 0.88 0.38 FP-3 重度损伤 0.81 0.61 0.23 表 5 E2水准地震动参数
Table 5. E2 level ground motion parameters
名称 时间间隔/s 有效持续时间/s 有效峰值加速度/g 调幅系数 RG1 0.010 25.00 0.350 1.00 RG2 0.010 30.00 0.350 1.00 GM1 0.005 31.40 0.053 6.60 GM2 0.010 42.35 0.167 2.09 GM3 0.010 33.50 0.072 4.86 GM4 0.020 28.22 0.132 2.65 GM5 0.005 38.40 0.144 2.43 表 6 结构性能目标
Table 6. Structural performance objectives
地震设防水准 结构性能水准 结构损伤状态 损伤定性描述 结构性能状态 损伤定量描述 E1 Ⅰ 中等/可修复损伤 表层混凝土发生剥落 稍加修理即可继续使用 表层混凝土达到剥落应变时的
截面初始塑性转角RspallE2 Ⅱ 局部失效/倒塌机制 核心区混凝土压酥破坏 不出现倒塌,保证生命安全 核心区混凝土达到极限压应变
时的截面容许塑性转角Rlimit表 7 双设防水准下的能力需求比
Table 7. Capacity requirements ratio at double defence levels
试件编号 E1地震设防水准下的
基底剪力能力需求比E2地震设防水准下的
墩顶位移能力需求比FP-0 2.32 3.35 FP-1 5.14 7.56 FP-2 4.10 5.46 FP-3 3.78 5.09 -
陈林之, 蒋欢军, 吕西林, 2010. 修正的钢筋混凝土结构Park-Ang损伤模型. 同济大学学报(自然科学版), 38(8): 1103—1107Chen L. Z. , Jiang H. J. , Lyu X. L. , 2010. Modified Park-Ang damage model for reinforced concrete structures. Journal of Tongji University (Natural Science), 38(8): 1103—1107. (in Chinese) 陈宗平, 周春恒, 李志彬, 2019. 角钢螺旋筋复合约束混凝土组合柱轴压性能及承载力计算. 土木工程学报, 52(1): 8—19 doi: 10.15951/j.tmgcxb.2019.01.002Chen Z. P. , Zhou C. H. , Li Z. B. , 2019. Axial compressive behavior and load-bearing capacity of concrete column confined with steel angle and circular spiral. China Civil Engineering Journal, 52(1): 8—19. (in Chinese) doi: 10.15951/j.tmgcxb.2019.01.002 邓江东, 宗周红, 黎雅乐等, 2013. 粘钢加固损伤混凝土箱型桥墩的抗震性能Ⅱ: 动力响应数值分析. 东南大学学报(自然科学版), 43(6): 1280—1287Deng J. D. , Zong Z. H. , Li Y. L. , et al. , 2013. Anti-seismic properties of damaged concrete bridge piers with hollow cross-section strengthened with adhering steel platesⅡ: numerical analysis on seismic dynamic responses. Journal of Southeast University (Natural Science Edition), 43(6): 1280—1287. (in Chinese) 李磊, 罗光喜, 王卓涵等, 2020. 震损钢筋混凝土柱剩余能力的数值模型. 工程力学, 37(12): 52—67 doi: 10.6052/j.issn.1000-4750.2019.12.0789Li L. , Luo G. X. , Wang Z. H. , et al. , 2020. Numerical model for the residual seismic capacity of seismically damaged reinforced concrete columns. Engineering Mechanics, 37(12): 52—67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0789 刘杰东, 2015. 震损钢筋混凝土框架滞回模型研究. 重庆: 重庆大学.Liu J. D., 2015. Research on modeling of hysteretic characteristics of RC frames damaged during earthquake. Chongqing: Chongqing University. (in Chinese) 刘黎明, 徐超, 卜春尧等, 2021. 双向水平地震动作用对某钢筋混凝土连续梁桥易损性的影响. 震灾防御技术, 16(4): 671—679 doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008Liu L. M. , Xu C. , Bu C. Y. , et al. , 2021. Influence of bi-directional horizontal ground motion on the vulnerability of a reinforced concrete continuous beam bridge. Technology for Earthquake Disaster Prevention, 16(4): 671—679. (in Chinese) doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104008 彭天波, 李建中, 胡世德等, 2004. 双层高架桥的抗震性能. 同济大学学报(自然科学版), 32(10): 1355—1359Peng T. B. , Li J. Z. , Hu S. D. , et al. , 2004. Seismic performance of double-deck viaduct. Journal of Tongji University (Natural Science), 32(10): 1355—1359. (in Chinese) 司炳君, 孙治国, 杜修力等, 2011. 钢筋混凝土桥墩地震弯剪破坏机理与震后快速修复技术研究. 土木工程学报, 44(7): 90—99 doi: 10.15951/j.tmgcxb.2011.07.011Si B. J. , Sun Z. G. , Du X. L. , et al. , 2011. Study on the seismic flexural-shear damage mechanisms and rapid repair techniques for earthquake damaged bridge piers. China Civil Engineering Journal, 44(7): 90—99. (in Chinese) doi: 10.15951/j.tmgcxb.2011.07.011 苏佶智, 刘伯权, 宋猛等, 2021. 基于应变能耗储的钢筋混凝土框架结构地震损伤演化研究. 震灾防御技术, 16(3): 533—543 doi: 10.11899/zzfy20210313Su J. Z. , Liu B. Q. , Song M. , et al. , 2021. Research on seismic damage evolution of reinforced concrete frame structures based on strain-energy consumption-storage theory. Technology for Earthquake Disaster Prevention, 16(3): 533—543. (in Chinese) doi: 10.11899/zzfy20210313 孙治国, 管璐, 赵泰儀等, 2020. CFRP修复震后RC桥墩分析模型与抗震性能. 应用基础与工程科学学报, 28(4): 878—889 doi: 10.16058/j.issn.1005-0930.2020.04.011Sun Z. G. , Guan L. , Zhao T. Y. , et al. , 2020. Analysis model and seismic behavior of repaired RC bridge piers after earthquakes by using CFRP. Journal of Basic Science and Engineering, 28(4): 878—889. (in Chinese) doi: 10.16058/j.issn.1005-0930.2020.04.011 许成祥, 王粘锦, 2021. 双层高架桥框架式桥墩地震损伤试验. 土木工程与管理学报, 38(5): 49—56 doi: 10.13579/j.cnki.2095-0985.2021.05.008Xu C. X. , Wang Z. J. , 2021. Experimental on seismic damage of frame piers of double-deck viaduct. Journal of Civil Engineering and Management, 38(5): 49—56. (in Chinese) doi: 10.13579/j.cnki.2095-0985.2021.05.008 张洁, 李建中, 管仲国, 2012. 双层高架桥拟静力试验研究. 结构工程师, 28(6): 128—133 doi: 10.3969/j.issn.1005-0159.2012.06.023Zhang J. , Li J. Z. , Guan Z. G. , 2012. Pseudo-static test study on double-deck viaducts. Structural Engineers, 28(6): 128—133. (in Chinese) doi: 10.3969/j.issn.1005-0159.2012.06.023 张洁, 管仲国, 李建中, 2017. 双层高架桥梁框架墩抗震性能试验研究. 工程力学, 34(2): 120—128 doi: 10.6052/j.issn.1000-4750.2015.07.0557Zhang J. , Guan Z. G. , Li J. Z. , 2017. Experimental research on seismic peformance of frame piers of double-deck viaducts. Engineering Mechanics, 34(2): 120—128. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.07.0557 中华人民共和国交通运输部, 2020. JTG/T 2231-01—2020 公路桥梁抗震设计规范. 北京: 人民交通出版社.Ministry of Transport of the People's Republic of China, 2020. JTG/T 2231-01—2020 Specifications for seismic design of highway bridges. Beijing: China Communications Press. (in Chinese) 中华人民共和国住房和城乡建设部, 2012. CJJ 166—2011 城市桥梁抗震设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2012. CJJ 166—2011 Code for seismic design of urban bridges. Beijing: China Architecture & Building Press. (in Chinese) 钟菊芳, 胡晓, 易立新等, 2006. 最大峰值加速度与有效峰值加速度的大小比例关系及影响因素探讨. 世界地震工程, 22(2): 34—38 doi: 10.3969/j.issn.1007-6069.2006.02.007Zhong J. F. , Hu X. , Yi L. X. , et al. , 2006. Study on relations of effective peak acceleration and peak ground acceleration. World Earthquake Engineering, 22(2): 34—38. (in Chinese) doi: 10.3969/j.issn.1007-6069.2006.02.007 周旺旺, 刘德稳, 赵洁等, 2022. 考虑土-结构作用的层间隔震结构三维地震响应. 科学技术与工程, 22(6): 2394—2400 doi: 10.3969/j.issn.1671-1815.2022.06.032Zhou W. W. , Liu D. W. , Zhao J. , et al. , 2022. Effect of soil-structure layer isolation structural three-dimensional seismic response. Science Technology and Engineering, 22(6): 2394—2400. (in Chinese) doi: 10.3969/j.issn.1671-1815.2022.06.032 卓卫东, 曾武华, 2015. 矩形RC桥墩变形能力概率模型. 工程力学, 32(1): 57—63, 71Zhuo W. D. , Zeng W. H. , 2015. Probabilistic deformation capacity model for rectangular RC bridge columns. Engineering Mechanics, 32(1): 57—63, 71. (in Chinese) Chai Y. H. , 1996. An analysis of the seismic characteristics of steel-jacketed circular bridge columns. Earthquake Engineering & Structural Dynamics, 25(2): 149—161. Deng J. , Liu T. H. , Xie W. Z. , et al. , 2015. Study on repaired earthquake-damaged bridge piers under seismic load. Advances in Materials Science and Engineering, 2015: 295392. He R. L. , Sneed L. H. , Belarbi A. , 2013. Rapid repair of severely damaged RC columns with different damage conditions: an experimental study. International Journal of Concrete Structures and Materials, 7(1): 35—50. doi: 10.1007/s40069-013-0030-7 He R. L. , Yang Y. , Sneed L. H. , 2015. Seismic repair of reinforced concrete bridge columns: review of research findings. Journal of Bridge Engineering, 20(15): 04015015. Hose Y. , Silva P. , Seible F. , 2000. Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads. Earthquake Spectra, 16(2): 413—442. doi: 10.1193/1.1586119 Khan Q. U. Z. , Ahmad A. , Mehboob S. , et al. , 2021. Energy dissipation characteristics of retrofitted damaged low-strength concrete bridge pier. Bridge Engineering, 174(2): 148—156. Montuori R. , Piluso V. , 2009. Reinforced concrete columns strengthened with angles and battens subjected to eccentric load. Engineering Structures, 31(2): 539—550. doi: 10.1016/j.engstruct.2008.10.005