Holocene Activity Evidence of West Branch of Anninghe Fault in Southeastern Tibet
-
摘要: 安宁河断裂是川滇菱形块体东边界主要构成断裂之一,在冕宁县城附近因南河断裂与其汇交,导致该区域断层几何结构复杂。通过地质考察和探槽开挖,新发现了一段全新世活动断裂,命名为安宁河断裂西支。通过典型断错地貌位移测量和年代学样品测试得到调查点左旋滑动速率为(1.6±0.2)mm/a。开挖的古地震探槽揭示了2次古地震事件,分别为(2 300 ±30)~(1 700±30) a BP之间的一次地震和公元1536年7½级地震。已有研究在安宁河断裂南段获得的2次大地震事件与本次探槽揭示的地震事件时间较好地对应,说明安宁河断裂南段的大震事件可能导致了安宁河断裂西支同时破裂。Abstract: Anninghe fault controls eastern boundary of Sichuan-Yunnan rhomboid block, and its structure is complex near Mianning County. Based on geological investigation and excavation, the fault is Holocene fault in chronology. Combined with offset geomorphology and chronology, the left-lateral slip rate of the fault is 1.8 mm/a. The excavation indicates that the West branch of the Anninghe fault has occurred two Paleoearthquakes since 2130 a BP at least, whose active ages are (2300 ±30)~(1700±30) a BP and 1536 a, respectively. The west branch of the Anninghe fault does not have a large scale enough to trigger large earthquake. Two major seismic events in the southern segment of the Anninghe fault caused the simultaneous rupture of the western branch of the fault.
-
Key words:
- Anninghe fault /
- Western branch of the Anninghe fault /
- Paleoearthquake /
- Slip rate /
- Holocene fault
-
表 1 14C年代样品测试结果
Table 1. The results of 14C samples
样品号 样品年龄/a BP 采样位置 测试机构 20220116-14C-3 3410±30 阶地 BETA实验室 20220116-14C-4 210±30 探槽 BETA实验室 20220116-14C-8 1700±30 探槽 BETA实验室 20220116-14C-9 340±30 探槽 BETA实验室 20220116-14C-15 110±30 探槽 BETA实验室 20220116-14C-16 200±30 探槽 BETA实验室 20220116-14C-19 2130±30 探槽 BETA实验室 -
刘栋梁, 宋春晖, 方小敏等, 2012. 榆木山地区玉门砾岩磁性地层及其对青藏高原东北部变形隆升意义. 地质学报, 86(6): 898—905Liu D. L. , Song C. H. , Fang X. M. , et al. , 2012. Magneteostratigraphy of Yumen conglomerate in the Yumushan region and its implication for deformation and uplift of the NE Tibetan Plateau. Acta Geologica Sinica, 86(6): 898—905. (in Chinese) 裴锡瑜, 王新民, 张成贵, 1998. 晚第四纪安宁河活断裂分段的基本特征. 四川地震, (4): 52—61Pei X. Y. , Wang X. M. , Zhang C. G. , 1998. Basic segmentation characteristics on Late Quarternary Anninghe active faults. Earthquake Research in Sichuan, (4): 52—61. (in Chinese) 冉勇康, 陈立春, 程建武等, 2008. 安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为. 中国科学 D辑: 地球科学, 38(5): 543—554. Ran Y. K. , Chen L. C. , Cheng J. W. , et al. , 2008. Late Quaternary surface deformation and rupture behavior of strong earthquake on the segment North of Mianning of the Anninghe fault. Science in China Series D: Earth Sciences, 51(9): 1224—1237. doi: 10.1007/s11430-008-0104-6 闻学泽, 杜平山, 龙德雄, 2000. 安宁河断裂带小相岭段古地震的新证据及最晚事件的年代. 地震地质, 22(1): 1—8Wen X. Z. , Du P. S. , Long D. X. , 2000. New evidence of paleoearthquakes and date of the Latest event on the Xiaoxiangling mountain segment of the Anninghe Fault zone. Seismology and Geology, 22(1): 1—8. (in Chinese) 闻学泽, 马胜利, 雷兴林等, 2007. 安宁河-则木河断裂带过渡段及其附近新发现的历史大地震破裂遗迹. 地震地质, 29(4): 826—833Wen X. Z. , Ma S. L. , Lei X. L. , et al. , 2008. Newly found surface rupture remains of large historical earthquakes on and near the transition segment of the Anninghe and Zemuhe fault zones, western Sichuan, China. Seismology and Geology, 29(4): 826—833. (in Chinese) 许志琴, 杨经绥, 李海兵等, 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1—33 doi: 10.1111/j.1755-6724.2011.00375.xXu Z. Q. , Yang J. S. , Li H. B. , et al. , 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica, 85(1): 1—33. (in Chinese) doi: 10.1111/j.1755-6724.2011.00375.x Deng Q. D. , Zhang P. Z. , Ran Y. K. , et al. , 2003. Basic characteristics of active tectonics of China. Science in China Series D: Earth Science, 46(4): 356—372. doi: 10.1360/03yd9032 He H. L. , Ran H. L. , Ikeda Y. , 2006. Uniform Strike-slip rate along the Xianshuihe-Xiaojiang fault system and its implications for Active Tectonics in Southeastern Tibet. Acta Geologica Sinica, 80(3): 376—386. Luo H. , Xu X. W. , Gao Z. W. , et al. , 2019. Spatial and temporal distribution of earthquake ruptures in the eastern segment of the Altyn Tagh fault, China. Journal of Asian Earth Sciences, 173: 263—274. doi: 10.1016/j.jseaes.2019.01.005 Molnar P. , Tapponnier P. , 1975. Cenozoic tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189(4201): 419—426. doi: 10.1126/science.189.4201.419 Molnar P. , England P. , Martinod J. , 1993. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Reviews of Geophysics, 31(4): 357—396. doi: 10.1029/93RG02030 Tapponnier P. , Xu Z. Q. , Roger F. , et al. , 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671—1677. doi: 10.1126/science.105978 Wells D. L. , Coppersmith K. J. , 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. doi: 10.1785/BSSA0840040974 Wu L. , Xiao A. C. , Wang L. Q. , et al. , 2012. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh Fault, NW China: insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Science China Earth Sciences, 55(6): 926—939. doi: 10.1007/s11430-012-4402-7 Zhang P. Z. , Shen Z. K. , Wang M. , et al. , 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809—812. doi: 10.1130/G20554.1 Zhong D. L. , Tapponnier P. , Wu H. W. , et al. , 1990. Large-scale strike slip fault: the major structure of intracontinental deformation after collision. Chinese Science Bulletin, 35(4): 304—309.