• ISSN 1673-5722
  • CN 11-5429/P

结合非下采样剪切波变换的BM3D去除图像噪声方法研究

樊华 王文旭 李晓阳 陈睿 韩贞辉

樊华,王文旭,李晓阳,陈睿,韩贞辉,2023. 结合非下采样剪切波变换的BM3D去除图像噪声方法研究. 震灾防御技术,18(3):651−662. doi:10.11899/zzfy20230322. doi: 10.11899/zzfy20230322
引用本文: 樊华,王文旭,李晓阳,陈睿,韩贞辉,2023. 结合非下采样剪切波变换的BM3D去除图像噪声方法研究. 震灾防御技术,18(3):651−662. doi:10.11899/zzfy20230322. doi: 10.11899/zzfy20230322
Fan Hua, Wang Wenxu, Li Xiaoyang, Chen Rui, Han Zhenhui. BM3D Method Combined with Non-subsampled Shearlet Transform for Removing Image Noise[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 651-662. doi: 10.11899/zzfy20230322
Citation: Fan Hua, Wang Wenxu, Li Xiaoyang, Chen Rui, Han Zhenhui. BM3D Method Combined with Non-subsampled Shearlet Transform for Removing Image Noise[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 651-662. doi: 10.11899/zzfy20230322

结合非下采样剪切波变换的BM3D去除图像噪声方法研究

doi: 10.11899/zzfy20230322
基金项目: 中国地震局地震应急青年重点任务(CEA_EDEM-202111);河南省青年人才托举工程项目(2022HYTP028);中国地震局地震应急与信息青年重点任务(CEA_EDEM-202315)
详细信息
    作者简介:

    樊华,女,生于1988年。工程师。主要从事防震减灾公共服务、震害防御工作。E-mail:867877458@qq.com

BM3D Method Combined with Non-subsampled Shearlet Transform for Removing Image Noise

  • 摘要: 强噪声图像去噪一直是图像处理技术应用领域研究的热点,为进一步提高强噪声图像的去噪质量和对图像边缘的保护,针对三维块匹配(Block Matching 3D,BM3D)方法对强噪声图像去噪效果不佳及图像线状奇异性(如边缘)缺乏最优表示的问题,提出了基于二维非下采样剪切波变换(Non-subsampled Shearlet Transform,NSST)和BM3D的组合去噪方法。该方法首先对含噪图像进行NSST正变换,得到不同尺度和不同方向高频子带的剪切波系数;然后对每个尺度不同方向的高频子带求取贝叶斯阈值,并利用渐进半软阈值函数对各高频子带进行去噪;最后对低频子带和各去噪高频子带进行NSST逆变换,得到去噪结果。将去噪图像作为BM3D中基础估计阶段的预滤波,能够进一步提高基础估计阶段分组的正确性,为BM3D去噪奠定良好基础。组合去噪方法结合了NSST与BM3D的各自优势,仿真试验结果表明,对于低噪声图像,本方法和BM3D方法去噪效果相同,略优于非局部平均法;对于强噪声卫星影像,本方法去噪效果优于BM3D和非局部平均法。
  • 图  1  频域自适应锥形划分

    Figure  1.  Adaptive tapered subgraph in frequency domain

    图  2  NSST三级分解示意

    Figure  2.  Schematic diagram of tertiary decomposition of NSST

    图  3  NSST去噪步骤示意

    Figure  3.  NSST denoising procedure diagram

    图  4  ST-BM3D算法流程

    Figure  4.  BM3D denoising process combined with NSST transform

    图  5  低噪声图像去噪效果对比

    Figure  5.  Contrast of weak noise images denoising effect

    图  6  强噪声图像去噪效果对比

    Figure  6.  Contrast of strong noise images denoising effect

    图  7  强噪声无人机图像去噪效果对比

    Figure  7.  Comparison of strong noise UAV image denoising

    图  8  强噪声卫星影像去噪效果对比

    Figure  8.  Comparison of strong noise satellite image denoising

    表  1  去噪方法性能评价结果

    Table  1.   Performance evaluation table of denoising method

    图像名称Lena图像点线面高对比度图像无人机图像卫星影像
    噪声值(低高斯噪声标准差30 dB)(强高斯噪声标准差100 dB)(强高斯噪声标准差100 dB)(强高斯噪声标准差100 dB)
    评价参数PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
    NL means方法25.310.9719.050.2716.330.4215.780.59
    BM3D方法28.560.9823.940.4322.070.6021.320.74
    本方法28.610.9826.050.7523.030.7122.420.80
    下载: 导出CSV
  • 阿依古力·吾布力, 2015. 基于剪切波和NSST变换的图像增强算法研究. 乌鲁木齐: 新疆大学.

    Wubuli A., 2015. Research on image enhancement methods based on shearlet and NSST transform. Urumqi: Xinjiang University. (in Chinese)
    车守全, 李涛, 包从望等, 2022. 矿区遥感图像去噪方法研究. 工矿自动化, 48(1): 113—118, 124

    Che S. Q. , Li T. , Bao C. W. , et al. , 2022. Research on denoising method of remote sensing image in mining area. Journal of Mine Automation, 48(1): 113—118, 124. (in Chinese)
    邓开元, 任超, 梁月吉等, 2019. 一种遥感影像混合噪声的去噪方法. 测绘通报, (2): 28—31, 70

    Deng K. Y. , Ren C. , Liang Y. J. , et al. , 2019. A denoising method of mixed noise of remote sensing image. Bulletin of Surveying and Mapping, (2): 28—31, 70. (in Chinese)
    冯岩, 薛瑞, 2014. 剪切波理论及其应用研究进展. 信阳师范学院学报: 自然科学版, 27(3): 463—468

    Feng Y. , Xue R. , 2014. Advances in theory and application of shearlets. Journal of Xinyang Normal University: Natural Science Edition, 27(3): 463—468. (in Chinese)
    龚俊亮, 何昕, 魏仲慧等, 2013. 基于贝叶斯估计的剪切波域局部自适应图像去噪. 液晶与显示, 28(5): 799—804 doi: 10.3788/YJYXS20132805.0799

    Gong J. L. , He X. , Wei Z. H. , et al. , 2013. Local adaptive image denoising based on Bayesian estimation in shearlet domain. Chinese Journal of Liquid Crystals and Displays, 28(5): 799—804. (in Chinese) doi: 10.3788/YJYXS20132805.0799
    韩文方, 2013. 基于稀疏表示的剪切波域图像去噪算法研究. 广州: 华南理工大学.

    Han W. F., 2013. Research on shearlet domain image denoising algorithm via sparse representation. Guangzhou: South China University of Technology. (in Chinese)
    焦姣, 吴玲达, 2019. 形态学滤波和改进PCNN的NSST域多光谱与全色图像融合. 中国图象图形学报, 24(3): 435—446

    Jiao J. , Wu L. D. , 2019. Fusion of multispectral and panchromatic images via morphological filter and improved PCNN in NSST domain. Journal of Image and Graphics, 24(3): 435—446. (in Chinese)
    李彦, 汪胜前, 邓承志, 2011. 多尺度几何分析的图像去噪方法综述. 计算机工程与应用, 47(34): 168—173, 218

    Li Y. , Wang S. Q. , Deng C. Z. , 2011. Overview on image denoising based on multi-scale geometric analysis. Computer Engineering and Applications, 47(34): 168—173, 218. (in Chinese)
    刘迪, 贾金露, 赵玉卿等, 2021. 基于深度学习的图像去噪方法研究综述. 计算机工程与应用, 57(7): 1—13

    Liu D. , Jia J. L. , Zhao Y. Q. , et al. , 2021. Overview of image denoising methods based on deep learning. Computer Engineering and Applications, 57(7): 1—13. (in Chinese)
    马科, 2014. 红外图像的多尺度几何分析理论及应用研究. 成都: 电子科技大学.

    Ma K., 2014. Multiscale geometric analysis theory and application research of infrared image. Chengdu: University of Electronic Science and Technology of China. (in Chinese)
    唐飞, 2014. 基于Contourlet变换和Shearlet变换的图像去噪算法研究. 湘潭: 湘潭大学.

    Tang F., 2014. Research on image denoising methods based on contourlet transform and shearlet transform. Xiangtan: Xiangtan University. (in Chinese)
    吴安全, 沈长圣, 肖金标等, 2017. 基于一种渐进半软阈值函数的小波去噪. 电子器件, 40(2): 396—399

    Wu A. Q. , Shen C. S. , Xiao J. B, et al. , 2017. Wavelet denoising based on an asymptotic semisoft thresholding function. Chinese Journal of Electron Devices, 40(2): 396—399. (in Chinese)
    张杰, 史小平, 张焕龙等, 2019. 高噪声遥感图像稀疏去噪重建. 哈尔滨工业大学学报, 51(10): 47—54

    Zhang J. , Shi X. P. , Zhang H. L. , et al. , 2019. High noise remote sensing image sparse denoising reconstruction. Journal of Harbin Institute of Technology, 51(10): 47—54. (in Chinese)
    张胜男, 王雷, 常春红等, 2020. 基于三维剪切波变换和BM4 D的图像去噪方法. 山东大学学报(工学版), 50(2): 83—90

    Zhang S. N. , Wang L. , Chang C. H. , et al. , 2020. Image denoising based on 3 D shearlet transform and BM4 D. Journal of Shandong University (Engineering Science), 50(2): 83—90. (in Chinese)
    赵洪臣, 周兴华, 彭聪等, 2019. 一种去除遥感影像混合噪声的集成BM3 D方法. 武汉大学学报·信息科学版, 44(6): 925—932

    Zhao H. C. , Zhou X. H. , Peng C. , et al. , 2019. An integrated BM3 D method for removing mixed noise in remote sensing image. Geomatics and Information Science of Wuhan University, 44(6): 925—932. (in Chinese)
    Buades A., Coll B., Morel J. M., 2005. A non-local algorithm for image denoising. In: IEEE International Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 60—65.
    Dabov K. , Foi A. , Katkovnik V. , et al. , 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8): 2080—2095. doi: 10.1109/TIP.2007.901238
    Donoho D. L. , Johnstone I. M. , 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3): 425—455. doi: 10.1093/biomet/81.3.425
    Donoho D. L. , 1995. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3): 613—627. doi: 10.1109/18.382009
    Easley G. , Labate D. , Lim W. Q. , 2008. Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis, 25(1): 25—46. doi: 10.1016/j.acha.2007.09.003
    Guo K. H., Labate D., Lim W. Q., et al., 2004, Wavelets with composite dilations. Electronic Research Announcements of the American Mathematical Society, 10: 78—87.
    Guo K. H., Kutyniok G., Labate D., 2005. Sparse multidimensional representations using anisotropic dilation and shear operators. Brentwood: Nashboro Press, 1—13.
    Guo K. H. , Labate D. , 2007. Optimally sparse multidimensional representation using shearlets. SIAM Journal on Mathematical Analysis, 39(1): 298—318. doi: 10.1137/060649781
    Kutyniok G., Labate D., 2012. Shearlets: multiscale analysis for multivariate data. Boston: Springer.
    Labate D., Lim W. Q., Kutyniok G., et al., 2005. Sparse multidimensional representation using shearlets. In: Proceedings of SPIE 5914, Wavelets XI. San Diego: SPIE, 59140 U.
    Wang Z. , Bovik A. C. , Sheikh H. R. , et al. , 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4): 600—612. doi: 10.1109/TIP.2003.819861
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  25
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回