• ISSN 1673-5722
  • CN 11-5429/P

PMC方法在江苏测震台网监测能力评估中的应用

立凯 何奕成 宫杰 何浩宇 秦磊 霍祝青

立凯,何奕成,宫杰,何浩宇,秦磊,霍祝青,2023. PMC方法在江苏测震台网监测能力评估中的应用. 震灾防御技术,18(3):642−650. doi:10.11899/zzfy20230321. doi: 10.11899/zzfy20230321
引用本文: 立凯,何奕成,宫杰,何浩宇,秦磊,霍祝青,2023. PMC方法在江苏测震台网监测能力评估中的应用. 震灾防御技术,18(3):642−650. doi:10.11899/zzfy20230321. doi: 10.11899/zzfy20230321
Li Kai, He Yicheng, Gong Jie, He Haoyu, Qin Lei, Huo Zhuqing. Analysis of Monitoring Capability of Jiangsu Seismic Network Based on PMC Method[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 642-650. doi: 10.11899/zzfy20230321
Citation: Li Kai, He Yicheng, Gong Jie, He Haoyu, Qin Lei, Huo Zhuqing. Analysis of Monitoring Capability of Jiangsu Seismic Network Based on PMC Method[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 642-650. doi: 10.11899/zzfy20230321

PMC方法在江苏测震台网监测能力评估中的应用

doi: 10.11899/zzfy20230321
基金项目: 江苏省地震局青年基金(202101);中国地震局地震应急与信息青年重点任务(CEAEDEM202308);国家自然科学基金(41874051);中国地震局地震星火科技计划项目(XH23015 A);江苏省地震局科技创新团队(2022-03、2022-04)
详细信息
    作者简介:

    立凯,男,生于1985年。工程师。主要从事地震监测等工作。E-mail:83411367@qq.com

    通讯作者:

    何奕成,男,生于1991年。工程师。主要从事地震监测及地震波衰减与成像的相关工作。E-mail:hyckevin@mail.ustc.edu.cn

Analysis of Monitoring Capability of Jiangsu Seismic Network Based on PMC Method

  • 摘要: 江苏测震台网经近20年的高速发展,已拥有75个数字测震台站,针对江苏台网监测能力的评估需求,同时为进一步优化台网布局,提高江苏测震台网监测能力提供参考意见,本文使用基于概率的完整性震级方法,利用江苏台网2009—2021年正式编目观测报告数据,对江苏台网进行监测能力评估。研究结果表明,江苏台网监测能力较好的地区为北部连云港周边地区,监测能力达到了$ {M}_{\mathrm{L}}\geqslant 1.0 $;其次为南部南京、镇江、常州及周边地区,监测能力达到了$ {M}_{\mathrm{L}}\geqslant 1.5 $;监测能力较差的地区为中部地区及近海海域,监测能力达到了$ {M}_{\mathrm{L}}\geqslant 2.0 $。整个江苏台网基本实现了$ {M}_{\mathrm{L}}\geqslant 2.0 $的监测能力,周边地区及中部近海海域基本实现了$ {M}_{\mathrm{L}}\geqslant 2.5 $的监测能力。
  • 图  1  江苏及共享的邻省地震台站和2009—2021年震中分布

    Figure  1.  Distribution of seismic stations of Jiangsu and adjacent provinces and earthquakes occurred during 2009—2021

    图  2  连云港台单台监测概率分布

    Figure  2.  Probability diagram of single station monitoring of Lianyungang station

    图  3  盐城台单台监测概率分布

    Figure  3.  Probability diagram of single station monitoring of Yancheng station

    图  4  南京台单台监测概率分布

    Figure  4.  Probability diagram of single station monitoring of Nanjing station

    图  5  $ {P}_{\mathrm{E}} $$ {M}_{\mathrm{P}} $空间分布

    Figure  5.  Composite detection probability $ {{P}}_{\mathrm{E}} $ distribution map and $ {{M}}_{\mathrm{P}} $ spatial distribution map

    表  1  江苏台网典型台站单台检测概率

    Table  1.   Statistical table of single station detection probability of typical stations of Jiangsu network

    台站名称/代码L/km
    ML=1.0PD=100%)
    ML/级
    L=100 kmPD=100%)
    L/km
    ML=3.0PD=100%)
    ML/级
    L=250 kmPD=100%)
    噪声级别台基
    类型
    常熟/CS401.61503.5石英砂岩
    常州/CZ1.4150混合花岗岩
    邳州/PZ1.71503.8石英砂岩
    徐州/XZ2.7150灰岩
    东海/DH201.81503.5混合花岗岩
    赣榆/GAY301.41503.3混合岩
    高淳/GC301.61503.5紫红长石砂岩
    灌云/GUY502.01503.2花岗片麻岩
    镇江/ZJ2.1150砂岩
    江宁/JN3.4903.5砂岩
    浦口/PK50灰岩
    靖江/JJ3.120石英砂岩
    金坛/JT4.650砂岩
    溧水/LIS202.11503.6片麻岩
    泗洪/SH2.01503.3安山岩
    宿迁/SQ2.41503.6安山凝灰岩
    —锡/WX201.71503.5石英砂岩
    新沂/XIY202.21503.3砂岩
    徐圩/XW202.41503.7花岗片麻岩
    盱眙/XY1.91003.7灰岩
    大丰(井下)/DF松散沉积层
    高邮(井下)/GY3.920松散沉积层
    海安(井下)/HA3.230松散沉积层
    淮安(井下)/HUA2.5150松散沉积层
    涟水(井下)/LIS30石英岩
    溧阳(井下)/LY102.0150安山玄武岩
    南通(井下)/NT10石英砂岩
    沛县(井下)/PX2.450石英砂岩
    启东(井下)/QD混合花岗岩
    如东(井下)/RD50灰岩
    射阳(井下)/SY20松散沉积层
    泰州(井下)/TZ2.9130沉积岩
    兴化(井下)/XH混合花岗岩
    盐城(井下)/YC60松散沉积层
    阳光岛(井下)/YGD基岩
    宝应(井下)/BY3.140石英砂岩
    昆山/KS2.5150灰岩
    六合/LH2.7150白云岩
    前三岛/QSD片麻岩
    宜兴/YX2.5150砂岩
    南京/NJ21.91503.3安山玄武岩
    连云港/LYG401.71503.1片麻岩
    下载: 导出CSV
  • 安祥宇, 赵倩, 王晓睿等, 2019. 基于PMC方法的辽宁测震台网监测能力评估. 地震工程学报, 41(6): 1545—1552 doi: 10.3969/j.issn.1000-0844.2019.06.1545

    An X. Y. , Zhao Q. , Wang X. R. , et al. , 2019. Assessment of earthquake monitoring capability of Liaoning seismic network based on PMC method. China Earthquake Engineering Journal, 41(6): 1545—1552. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.06.1545
    黄亦磊, 周仕勇, 庄建仓, 2016. 基于地震目录估计完备震级方法的数值实验. 地球物理学报, 59(4): 1350—1358 doi: 10.6038/cjg20160416

    Huang Y. L. , Zhou S. Y. , Zhuang J. C. , 2016. Numerical tests on catalog-based methods to estimate magnitude of completeness. Chinese Journal of Geophysics, 59(4): 1350—1358. (in Chinese) doi: 10.6038/cjg20160416
    霍祝青, 瞿旻, 2016. 江苏地区小震精定位及构造意义分析. 地震工程学报, 38(5): 802—807 doi: 10.3969/j.issn.1000-0844.2016.05.0802

    Huo Z. Q. , Qu M. , 2016. Precise relocation of small earthquakes in the Jiangsu area and associated tectonic implications. China Earthquake Engineering Journal, 38(5): 802—807. (in Chinese) doi: 10.3969/j.issn.1000-0844.2016.05.0802
    蒋长胜, 房立华, 韩立波等, 2015. 利用PMC方法评估地震台阵的地震检测能力——以西昌流动地震台阵为例. 地球物理学报, 58(3): 832—843 doi: 10.6038/cjg20150313

    Jiang C. S. , Fang L. H. , Han L. B. , et al. , 2015. Assessment of earthquake detection capability for the seismic array: a case study of the Xichang seismic array. Chinese Journal of Geophysics, 58(3): 832—843. (in Chinese) doi: 10.6038/cjg20150313
    立凯, 陈浩, 张朋等, 2021. 江苏省测震台网背景噪声特征. 华北地震科学, 39(3): 66—71, 76

    Li K., Chen H., Zhang P., et al., 2021 Background noise characteristics of Jiangsu seismological network. North China Earthquake Sciences, 39(3): 66—71, 76. (in Chinese)
    李智超, 黄清华, 2014. 基于概率完备震级评估首都圈地震台网检测能力. 地球物理学报, 57(8): 2584—2593 doi: 10.6038/cjg20140818

    Li Z. C. , Huang Q. H. , 2014. Assessment of detectability of the capital-circle seismic network by using the probability-based magnitude of completeness (PMC) method. Chinese Journal of Geophysics, 57(8): 2584—2593. (in Chinese) doi: 10.6038/cjg20140818
    刘芳, 蒋长胜, 张帆等, 2014. 内蒙古区域地震台网监测能力研究. 地震学报, 36(5): 919—929

    Liu F. , Jiang C. S. , Zhang F. , et al. , 2014. A study on detection capability of the Inner Mongolia regional seismic network. Acta Seismologica Sinica, 36(5): 919—929. (in Chinese)
    王鹏, 郑建常, 李铂, 2016. 基于PMC方法的山东省测震台网监测能力评估. 地球物理学进展, 31(6): 2408—2414 doi: 10.6038/pg20160607

    Wang P. , Zheng J. C. , Li B. , 2016. Analysis of detection capability of Shandong regional seismic network based on PMC method. Progress in Geophysics, 31(6): 2408—2414. (in Chinese) doi: 10.6038/pg20160607
    Enescu B., Ito K., 2002. Spatial analysis of the frequency-magnitude distribution and decay rate of aftershock activity of the 2000 western tottori earthquake. Earth, Planets and Space, 54(8): 847—859.
    Gentili S., Sugan M., Peruzza L., et al., 2011. Probabilistic completeness assessment of the past 30 years of seismic monitoring in northeastern Italy. Physics of the Earth and Planetary Interiors, 186(1—2): 81—96.
    Gomberg J. , 1991. Seismicity and detection/location threshold in the southern great basin seismic network. Journal of Geophysical Research: Solid Earth, 96(B10): 16401—16414. doi: 10.1029/91JB01593
    Gomberg J. , Reasenberg P. A. , Bodin P. , et al. , 2001. Earthquake triggering by seismic waves following the landers and hector mine earthquakes. Nature, 411(6836): 462—466. doi: 10.1038/35078053
    Gutenberg B. , Richter C. F. , 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4): 185—188. doi: 10.1785/BSSA0340040185
    He Y. C. , Li J. L. , Tian W. , et al. , 2021. Characterization of the near-surface shear wave attenuation in the Groningen gas field using borehole recording. Geophysical Journal International, 226(3): 2057—2072. doi: 10.1093/gji/ggab186
    Knopoff L. , 2000. The magnitude distribution of declustered earthquakes in Southern California. Proceedings of the National Academy of Sciences of the United States of America, 97(22): 11880—11884.
    Main I., 2000. Apparent breaks in scaling in the earthquake cumulative frequency-magnitude distribution: fact or artifact? Bulletin of the Seismological Society of America, 90(1): 86—97.
    Nanjo K. Z. , Schorlemmer D. , Woessner J. , et al. , 2010. Earthquake detection capability of the Swiss seismic network. Geophysical Journal International, 181(3): 1713—1724
    Rydelek P. A. , Sacks I. S. , 1989. Testing the completeness of earthquake catalogues and the hypothesis of self-similarity. Nature, 337(6204): 251—253. doi: 10.1038/337251a0
    Schorlemmer D. , Woessner J. , 2008. Probability of detecting an earthquake. Bulletin of the Seismological Society of America, 98(5): 2103—2117. doi: 10.1785/0120070105
    Schorlemmer D. , Mele F. , Marzocchi W. , 2010. A completeness analysis of the national seismic network of Italy. Journal of Geophysical Research: Solid Earth, 115(B4): B04308.
    Sereno T. J. Jr. , Bratt S. R. , 1989. Seismic detection capability at NORESS and implications for the detection threshold of a hypothetical network in the Soviet Union. Journal of Geophysical Research: Solid Earth, 94(B8): 10397—10414. doi: 10.1029/JB094iB08p10397
    Stein R. S. , 1999. The role of stress transfer in earthquake occurrence. Nature, 402(6762): 605—609. doi: 10.1038/45144
    Wiemer S. , Wyss M. , 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4): 859—869. doi: 10.1785/0119990114
    Wiemer S. , Wyss M. , 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Advances in Geophysics, 45: 259—302, I-V.
    Woessner J. , Wiemer S. , 2005. Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2): 684—698. doi: 10.1785/0120040007
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  29
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回