Seismic Energy Distribution and Dissipation of Structures with Viscous Dampers under Near-fault Pulse-type Earthquakes
-
摘要: 为研究近断层脉冲型地震动对黏滞阻尼器减震结构抗震性能的影响,从结构在地震动作用下的能量分配与耗散机制角度进行探讨分析。基于结构能量平衡原理,利用MATLAB软件编写减震结构能量响应求解程序,利用该程序计算分析减震结构与无控结构在不同近断层脉冲型地震动作用下的能量分布特点,并分析减震结构在近断层非脉冲型和脉冲型地震动作用下的能量分布与结构变形的差异性,进一步揭示脉冲周期Tp对减震结构塑性耗能分布的影响规律。研究结果表明,在不同近断层地震动作用下,附设黏滞阻尼器的减震结构表现出了不同的减震效果,其塑性变形程度受结构自振周期与脉冲周期之比的影响较显著。当结构在遭遇地震之前的基本周期与脉冲周期之比T0/Tp接近于1时,结构因共振效应导致其塑性变形显著增大,其地震损伤程度较严重;当T0/Tp远大于1,或当T0/Tp小于1且结构在遭遇地震之后的基本周期与脉冲周期之比T1/Tp同时远小于1时,减震结构可避开共振频段,其塑性变形显著减小,且在近断层脉冲型地震动作用下的抗震性能得到提高。Abstract: To study the influence of near-fault pulse ground motion on the seismic performance of viscous damper damping structures, the energy distribution and dissipation mechanism of structures under earthquake are discussed and analyzed. A program for solving the energy response of the structure with viscous dampers is developed by software MATLAB based on the principle of energy balance, and the energy distribution characteristics of structures with and without dampers under different near fault pulse-type earthquakes are calculated and analyzed by using this program. At the same time, the difference of energy distribution and structural deformation results of the damping structure under near fault no-pulse and pulse ground motions is analyzed, and the influence of pulse period Tp on the plastic energy dissipation distribution of structures is further revealed. The results show that the plastic deformation of the structures is significantly affected by the ratio of fundamental vibration period to the pulse period. When T0/Tp approaches ‘1’, the plastic deformation increases significantly due to the resonance effect, and the seismic damage of the structures is more serious. When T0/Tp is larger than ‘1’, or T0/Tp and T1/Tp are smaller than ‘1’ at the same time, the structure can avoid the resonance frequency band, thus the seismic performance of structures with dampers under near fault pulse-type earthquakes can be significantly improved.
-
表 1 梁柱截面尺寸
Table 1. Cross sectional dimensions of beams and columns
构件名称 构件所在位置 构件尺寸/mm 1~4层 5~8层 梁 ①~④轴 600×200×10×15 600×200 ×10 ×15 A、E轴 600×200×12 ×20 600×200×12×20 B、C、D轴 600×300×12×20 600×300×12×20 柱 边柱 400×14 380×8 中柱 450×20 400×14 表 2 等效的多质点层剪切模型
Table 2. Equivalent multi particle layer shear model
楼层 质量/t y向刚度/(kN·m−1) 1 400.3 333.7×103 2 400.3 210.1×103 3 400.3 196.4×103 4 400.3 191.8×103 5 394.3 149.3×103 6 394.3 148.5×103 7 394.3 148.3×103 8 394.3 144.7×103 表 3 简化模型与实际结构y向前三阶周期对比
Table 3. Comparison of simplified model and actual structure in y-direction with first three natural vibration periods
阶次 周期/s MATLAB简化模型程序 YJK软件 第一阶 1.50 1.51 第二阶 0.54 0.52 第三阶 0.33 0.30 表 4 阻尼器布置
Table 4. Layout of fluid viscous damper
阻尼器布置 楼 层 1层 2层 3层 4层 5层 6层 7层 8层 $ {\alpha _0} $ 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 $ {C_{{{{\rm{d}}j}}}} $/[(kN·s)·m−1] 960 960 840 840 840 840 680 680 表 5 近断层脉冲型地震动记录信息
Table 5. Information of near-fault pulse-type ground motion records
编号 地震 选用的分量 震级/级 断层距/km PGA/g PGV/(cm·s−1) Tp/s n1 Parkfield-02CA RSN4126_SC1090 6.00 3.79 0.683 35.97 0.64 n2 Duzce Turkey RSN1602_BOL090 7.14 12.04 0.806 65.85 0.88 n3 San Salvador RSN569_NGI270 5.80 6.99 0.534 72.95 1.02 n4 Northern Calif-03 RSN20_FRN044 6.50 27.02 0.163 36.05 2.05 n5 Darfield New Zealand RSN6906_GDLCS35W 7.00 1.22 0.708 100.28 2.24 n6 Imperial Valley-06 RSN159_AGR003 6.53 0.65 0.287 34.92 2.45 n7 Kobe Japan RSN1114_PRI000 6.90 3.31 0.348 90.63 2.83 n8 Darfield New Zealand RSN6911_HORCS72E 7.00 7.29 0.477 69.82 4.02 n9 Imperial Valley-06 RSN182_E07230 6.53 0.56 0.469 113.08 4.28 n10 Kocaeli Turkey RSN1176_YPT150 7.51 4.83 0.322 71.85 4.54 n11 Imperial Valley-06 RSN185_HVP225 6.53 7.50 0.258 53.11 5.15 n12 Westmorland RSN316_PTS225 5.90 16.66 0.232 55.55 5.36 n13 Imperial Valley-06 RSN184_EDA270 6.53 5.09 0.353 75.54 5.97 n14 Landers RSN900_YER270 7.28 23.62 0.245 51.10 7.50 表 6 近断层非脉冲型地震动记录信息
Table 6. Information of near-fault no pulse ground motion records
编号 地震 选用的分量 震级/级 断层距/km PGA/g np1 Northern Calif-03 RSN20_FRN314 6.50 27.02 0.203 np2 Imperial Valley-06 RSN161_BRA315 6.53 10.42 0.220 np3 Landers RSN900_YER360 7.28 23.62 0.152 np4 Kobe_ Japan RSN1114_PRI090 6.90 3.31 0.290 np5 Parkfield-02_ CA RSN4102_C03090 6.00 3.63 0.326 np6 El Mayor-Cucapah_ Mexico RSN5825_GEO000 7.20 10.92 0.286 np7 El Mayor-Cucapah_ Mexico RSN5829_RII000 7.20 13.71 0.397 np8 Darfield_ New Zealand RSN6887_CBGSN89 W 7.00 18.05 0.155 np9 Darfield_ New Zealand RSN6911_HORCN18 E 7.00 7.29 0.450 np10 Darfield_ New Zealand RSN6966_SHLCS40 W 7.00 22.33 0.167 -
贾俊峰, 杜修力, 韩强, 2015. 近断层地震动特征及其对工程结构影响的研究进展. 建筑结构学报, 36(1): 1—12 doi: 10.14006/j.jzjgxb.2015.01.001Jia J. F. , Du X. L. , Han Q. , 2015. A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures. Journal of Building Structures, 36(1): 1—12. (in Chinese) doi: 10.14006/j.jzjgxb.2015.01.001 李明, 谢礼立, 翟长海等, 2009. 近断层地震动区域的划分. 地震工程与工程振动, 29(5): 20—25 doi: 10.13197/j.eeev.2009.05.004Li M. , Xie L. L. , Zhai C. H. , et al. , 2009. Scope division of near-fault ground motion. Journal of Earthquake Engineering and Engineering Vibration, 29(5): 20—25. (in Chinese) doi: 10.13197/j.eeev.2009.05.004 秋山宏, 2010. 基于能量平衡的建筑结构抗震设计. 叶列平, 裴星洙, 译. 北京: 清华大学出版社.Qiu S. H. , 2010. Earthquake-resistant design method for buildings based on energy balance. Ye L. P. , Pei X. S. , trans. Beijing: Tsinghua University Press. (in Chinese) 徐龙军, 胡进军, 谢礼立, 2008. 特殊长周期地震动的参数特征研究. 地震工程与工程振动, 28(6): 20—27 doi: 10.13197/j.eeev.2008.06.008Xu L. J. , Hu J. J. , Xie L. L. , 2008. On characteristics of ground motion parameters for special long-period ground motions. Earthquake Engineering and Engineering Vibration, 28(6): 20—27. (in Chinese) doi: 10.13197/j.eeev.2008.06.008 许智星, 孙颖, 谷音等, 2013. 长周期地震动参数及频谱特征. 福州大学学报(自然科学版), 41(4): 760—764Xu Z. X. , Sun Y. , Gu Y. , et al. , 2013. The parameter and spectrum signature of long-period ground motion. Journal of Fuzhou University (Natural Science Edition), 41(4): 760—764. (in Chinese) 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese) Baker J. W. , 2007. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5): 1486—1501. doi: 10.1785/0120060255 Banazadeh M. , Ghanbari A. , 2017. Seismic performance assessment of steel moment-resisting frames equipped with linear and nonlinear fluid viscous dampers with the same damping ratio. Journal of Constructional Steel Research, 136: 215—228. doi: 10.1016/j.jcsr.2017.05.022 Dicleli M. , Mehta A. , 2007. Effect of near-fault ground motion and damper characteristics on the seismic performance of chevron braced steel frames. Earthquake Engineering & Structural Dynamics, 36(7): 927—948. Xu Z. , Agrawal A. K. , He W. L. , et al. , 2007. Performance of passive energy dissipation systems during near-field ground motion type pulses. Engineering Structures, 29(2): 224—236. doi: 10.1016/j.engstruct.2006.04.020 Zhang J., Wang X., 2012. Optimal nonlinear damping for inelastic structures using dimensional analysis. In: 20 th Analysis and Computation Specialty Conference. Chicago: ASCE.