• ISSN 1673-5722
  • CN 11-5429/P

增设落地剪力墙对框架结构地震剪力分配的影响研究

罗若帆 王波 郭迅 范晓庆

罗若帆,王波,郭迅,范晓庆,2023. 增设落地剪力墙对框架结构地震剪力分配的影响研究. 震灾防御技术,18(3):585−594. doi:10.11899/zzfy20230315. doi: 10.11899/zzfy20230315
引用本文: 罗若帆,王波,郭迅,范晓庆,2023. 增设落地剪力墙对框架结构地震剪力分配的影响研究. 震灾防御技术,18(3):585−594. doi:10.11899/zzfy20230315. doi: 10.11899/zzfy20230315
Luo Ruofan, Wang Bo, Guo Xun, Fan Xiaoqing. Influence of Shear Walls on Optimizing Seismic Internal Force Distribution of RC Structures[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 585-594. doi: 10.11899/zzfy20230315
Citation: Luo Ruofan, Wang Bo, Guo Xun, Fan Xiaoqing. Influence of Shear Walls on Optimizing Seismic Internal Force Distribution of RC Structures[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 585-594. doi: 10.11899/zzfy20230315

增设落地剪力墙对框架结构地震剪力分配的影响研究

doi: 10.11899/zzfy20230315
基金项目: 地震科技星火计划青年项目(XH22022YA);河北省高等学校科学研究项目(BJK2022066);中央高校基本科研业务费专项资助项目(ZY20215109);廊坊市科学技术研究与发展计划自筹经费项目(2021013089、2020013153)
详细信息
    作者简介:

    罗若帆,男,生于1988年。博士研究生,讲师。主要从事结构抗震研究。E-mail:jylrf@jyu.edu.cn

    通讯作者:

    王波,男,生于1989年。博士,讲师。主要从事结构抗震方面的教学和研究工作。E-mail:wangbo0808@126.com

Influence of Shear Walls on Optimizing Seismic Internal Force Distribution of RC Structures

  • 摘要: 为研究地震作用下钢筋混凝土框架结构倒塌机理,验证基于内力分配得到的抗倒塌措施的合理性,设计2组缩尺比例为1∶4的框架结构模型并开展振动台对比试验,单次双向输入地震动峰值加速度为1.0 g,分析地震作用下填充墙-框架结构变形模式和破坏特点,对比分析有、无落地剪力墙框架结构柱间内力分配规律。研究结果表明,填充墙影响框架结构整体变形及柱破坏模式,横向满砌填充墙约束结构扭转变形,即使在双向地震作用下,偏心结构也未发生扭转;由于窗下半高连续填充墙的约束作用,窗间柱抗侧刚度变大,在地震作用下承担的地震剪力是不受半高连续填充墙约束柱的6~8倍;设置落地剪力墙可优化底层柱间地震剪力分配,使框架柱地震剪力分配趋于均匀,避免结构因“凝震聚力”而发生倒塌,实现“大震不倒”。
  • 图  1  模型Ⅰ外观照片

    Figure  1.  The photo of model Ⅰ

    图  2  模型Ⅱ外观照片(带剪力墙)

    Figure  2.  The photo of model Ⅱ with shear walls

    图  3  剪力墙截面尺寸

    Figure  3.  The size of shear walls

    图  4  柱配筋

    Figure  4.  The reinforcement of columns

    图  5  传感器布置示意

    Figure  5.  The position of sensors

    图  6  模型Ⅰ台面加速度时程曲线

    Figure  6.  The inputting acceleration timehistory curves of model Ⅰ

    图  7  模型Ⅱ台面加速度时程曲线

    Figure  7.  The inputting acceleration timehistory curves of model Ⅱ

    图  8  模型Ⅰ底层位移时程曲线

    Figure  8.  The displacement timehistory curves of model Ⅰ

    图  9  模型Ⅱ底层位移时程曲线

    Figure  9.  The displacement timehistory curves of model Ⅱ

    图  10  模型Ⅰ和模型Ⅱ底层柱间内力分配情况

    Figure  10.  The comparison of shear force of the models with or without the shear walls

    图  11  模型Ⅰ倒塌模式

    Figure  11.  The collapsing pattern of model Ⅰ

    图  12  模型Ⅱ经历峰值加速度约为1.0 g的地震作用未倒塌

    Figure  12.  Model II with no collapse under peak ground acceleration of 0.10g

    图  13  模型Ⅱ底层构件破坏情况

    Figure  13.  Damage situation of ground floor members of model Ⅱ after earthquake

    表  1  试验模型主要相似关系

    Table  1.   The similarity ratio of the experimental model

    项目相似比
    模型Ⅰ
    (人工质量13.4 t)
    模型Ⅱ
    (人工质量11.6 t)
    长度lr0.250.25
    弹性模量Er0.550.55
    材料密度ρr2.202.20
    应力σr0.550.55
    时间tr0.500.50
    速度vr0.500.50
    加速度ar1.001.00
    下载: 导出CSV

    表  2  不同时刻模型Ⅰ底层柱端应变

    Table  2.   The strain of the columns of model Ⅰ at different moments

    时间t/s柱端应变/με
    A/①轴柱A/②轴柱A/③轴柱B/①轴柱B/②轴柱B/③轴柱C/①轴柱C/②轴柱C/③轴柱
    上端下端上端下端上端下端上端下端上端下端上端下端上端下端上端下端上端下端
    6.1425244918261613121816101781098911
    7.2021204115221411101513914788789
    14.288374144627346413553493053233028252835
    17.136962124506339373147432747202625212531
    20.127970138547344393250453150232726222832
    24.325145103304829322539352338172119162125
    下载: 导出CSV

    表  3  不同时刻模型Ⅱ底层柱端应变

    Table  3.   The strain of the columns of model Ⅱ at different moments

    时间t/s柱端应变/με
    A/①轴柱A/②轴柱A/③轴柱B/①轴柱B/②轴柱B/③轴柱C/①轴柱(带剪力墙)C/②轴柱C/③轴柱(带剪力墙)
    上端下端上端下端上端下端上端下端上端下端上端下端上端下端上端下端上端下端
    12.33233145291446293628393538356931268
    14.7335506745236743524057525527914471100
    19.343346624222634251395550531781445196
    21.295181997432105657960847780111725712146
    25.0244618259278551624867616539517551115
    26.435381997234104627557817679411322671139
    下载: 导出CSV

    表  4  底层框架柱计算参数

    Table  4.   The column parameters of two models

    编号h/mmy/mmIz/mm4等效计算方法示意
    A/①轴柱,A/③轴柱38040.005.12×106
    A/②轴柱38040.003.41×106
    B/①轴柱,B/③轴柱74040.005.12×106
    B/②轴柱74040.003.41×106
    C/②轴柱74040.003.41×106
    C/①轴柱,C/③轴柱74040.003.41×106
    C/①轴柱,C/③轴柱(带剪力墙)74088.223.94×107
    注:表中右图为横墙对柱纵向抗侧刚度影响的等效计算方法示意,用于估算模型Ⅰ和模型Ⅱ的A/①轴柱、A/③轴柱、B/①轴柱、B/③轴柱与横墙组合体的惯性矩。
    下载: 导出CSV

    表  5  不同时刻模型Ⅰ底层柱地震剪力

    Table  5.   The shear force of the columns of model Ⅰ at different moments

    时间t/s地震剪力/N
    A/①轴柱A/②轴柱A/③轴柱B/①轴柱B/②轴柱B/③轴柱C/①轴柱C/②轴柱C/③轴柱
    6.14421384361111100119535059
    7.203523213099382102444450
    14.281 3491 1791 022336299366156156185
    17.131 126995876300265327135135164
    20.121 2801 0981 005314279357147141176
    24.32824761661252217269112103135
    下载: 导出CSV

    表  6  不同时刻模型Ⅱ底层柱地震剪力

    Table  6.   The shear force of the columns of model Ⅱ at different moments

    时间t/s地震剪力/N
    A/①轴柱A/②轴柱A/③轴柱B/①轴柱B/②轴柱B/③轴柱C/①轴柱
    (带剪力墙)
    C/②轴柱C/③轴柱
    (带剪力墙)
    12.334644245162871973229081181 077
    14.737306407744192854721 2471791 554
    19.346795947304102764541 2161731 493
    21.291 1349901 1776354236931 8162822 278
    25.029028069624993385561 5082121 785
    26.431 1519781 1856044066841 8012612 155
    下载: 导出CSV
  • 顾祥林, 黄庆华, 汪小林等, 2012. 地震中钢筋混凝土框架结构倒塌反应的试验研究与数值仿真. 土木工程学报, 45(9): 36—45

    Gu X. L. , Huang Q. H. , Wang X. L. , et al. , 2012. Spatial collapse responses of reinforced concrete frame structures under earthquakes-test study and numerical simulation. China Civil Engineering Journal, 45(9): 36—45. (in Chinese)
    郭迅, 2010. 汶川地震震害与抗倒塌新认识. 土木建筑与环境工程, 32(S2): 28—29.
    李小军, 于爱勤, 甘朋霞等, 2008. 汶川8.0级地震北川县城区灾害调查与分析. 震灾防御技术, 3(4): 352—362 doi: 10.3969/j.issn.1673-5722.2008.04.004

    Li X. J. , Yu A. Q. , Gan P. X. , et al. , 2008. Survey and analysis of the disaster and engineering damage of Beichuan county seat in MS8.0 Wenchuan earthquake. Technology for Earthquake Disaster Prevention, 3(4): 352—362. (in Chinese) doi: 10.3969/j.issn.1673-5722.2008.04.004
    李英民, 罗文文, 韩军, 2013. 钢筋混凝土框架结构强震破坏模式的控制. 土木工程学报, 46(5): 85—92 doi: 10.15951/j.tmgcxb.2013.05.021

    Li Y. M. , Luo W. W. , Han J. , 2013. Control of failure mechanism for RC frame structure under strong earthquakes. China Civil Engineering Journal, 46(5): 85—92. (in Chinese) doi: 10.15951/j.tmgcxb.2013.05.021
    林超, 郭子雄, 黄群贤等, 2018. 足尺砌体填充墙RC框架抗震性能试验研究. 建筑结构学报, 39(9): 30—37

    Lin C. , Guo Z. X. , Huang Q. X. , et al. , 2018. Experimental study on seismic behavior of full-scale infilled RC frames. Journal of Building Structures, 39(9): 30—37. (in Chinese)
    刘伯权, 苏佶智, 马煜东等, 2019. 多层多跨钢筋混凝土平面框架拟静力倒塌试验研究. 土木工程学报, 52(8): 24—39 doi: 10.15951/j.tmgcxb.2019.08.003

    Liu B. Q. , Su J. Z. , Ma Y. D. , et al. , 2019. Pseudo-static collapse experiment of multi-story multi-span reinforced concrete plane frames. China Civil Engineering Journal, 52(8): 24—39. (in Chinese) doi: 10.15951/j.tmgcxb.2019.08.003
    骆欢, 杜轲, 孙景江等, 2017. 地震作用下钢筋混凝土框架结构倒塌全过程振动台试验研究. 建筑结构学报, 38(12): 49—56

    Luo H. , Du K. , Sun J. J. , et al. , 2017. Shaking table test on complete collapse process of RC frame structure subjected to earthquake. Journal of Building Structures, 38(12): 49—56. (in Chinese)
    曲哲, 和田章, 叶列平, 2011. 摇摆墙在框架结构抗震加固中的应用. 建筑结构学报, 32(9): 11—19

    Qu Z. , He T. Z. , Ye L. P. , 2011. Seismic retrofit of frame structures using rocking wall system. Journal of Building Structures, 32(9): 11—19. (in Chinese)
    苏幼坡, 张玉敏, 王绍杰等, 2009. 从汶川地震看提高建筑结构抗倒塌能力的必要性和可行性. 土木工程学报, 42(5): 25—32 doi: 10.15951/j.tmgcxb.2009.05.010

    Su Y. P. , Zhang Y. M. , Wang S. J. , et al. , 2009. The necessity and feasibility of enhancing seismic design of structures based on the Wenchuan earthquake. China Civil Engineering Journal, 42(5): 25—32. (in Chinese) doi: 10.15951/j.tmgcxb.2009.05.010
    王波, 2017. 典型RC框架结构地震倒塌机理研究. 三河: 防灾科技学院.

    Wang B., 2017. Experimental study on collapse mechanism of typical RC frame structures. Sanhe: Institute of Disaster Prevention. (in Chinese)
    王波, 郭迅, 宣越, 2020. 基于新视角的震害分析——以四川长宁6.0级地震为例. 震灾防御技术, 15(3): 496—509 doi: 10.11899/zzfy20200303

    Wang B. , Guo X. , Xuan Y. , 2020. Analysis of earthquake damage from a new perspective: a case study of Changning M6.0 earthquake in Sichuan Province. Technology for Earthquake Disaster Prevention, 15(3): 496—509. (in Chinese) doi: 10.11899/zzfy20200303
    王中阳, 车佳玲, 张尚荣等, 2018. 基于能量方法设计的RC框架结构易损性分析. 震灾防御技术, 13(3): 524—533

    Wang Z. Y. , Che J. L. , Zhang S. R. , et al. , 2018. Seismic fragility analysis of RC frame structure based on energy balance. Technology for Earthquake Disaster Prevention, 13(3): 524—533. (in Chinese)
    徐超, 刘健, 温增平等, 2016. 汶川地震中某RC框架结构的震害分析与模拟. 震灾防御技术, 11(3): 542—551 doi: 10.11899/zzfy20160310

    Xu C. , Liu J. , Wen Z. P. , et al. , 2016. Damage analysis and simulation of a RC frame structure in the Wenchuan earthquake. Technology for Earthquake Disaster Prevention, 11(3): 542—551. (in Chinese) doi: 10.11899/zzfy20160310
    许卫晓, 孙景江, 杜轲等, 2015. 阶梯墙框架结构体系的抗震性能分析. 工程力学, 32(2): 139—146

    Xu W. X. , Sun J. J. , Du K. , et al. , 2015. Seismic performance analysis of stepped wall-frame structure. Engineering Mechanics, 32(2): 139—146. (in Chinese)
    闫培雷, 孙柏涛, 张昊宇, 2014. 芦山7.0级强烈地震钢筋混凝土框架结构教学楼震害. 土木工程学报, 47(S1): 24—28

    Yan P. L. , Sun B. T. , Zhang H. Y. , 2014. Seismic damage to RC frame teaching buildings in Lushan MS7.0 earthquake. China Civil Engineering Journal, 47(S1): 24—28. (in Chinese)
    杨伟松, 郭迅, 许卫晓等, 2015. 增设翼墙RC框架结构的抗震性能研究. 振动与冲击, 34(24): 144—152

    Yang W. S. , Guo X. , Xu W. X. , et al. , 2015. Seismic behaviors of RC frames retrofitted with wing walls. Journal of Vibration and Shock, 34(24): 144—152. (in Chinese)
    袁新星, 2018. RC框架结构“强柱弱梁”问题的探讨. 三河: 防灾科技学院.

    Yuan X. X. , 2018. Discussion on “strong column weak beam” of RC frame structure. Sanhe: Institute of Disaster Prevention. (in Chinese)
    张望喜, 庞博, 徐帅, 2019. 基于IDA和易损性分析的RC框架结构底层柱端弯矩增大系数. 重庆大学学报, 42(5): 37—45

    Zhang W. X. , Pang B. , Xu S. , 2019. Research on bottom column end moment amplification factor of RC frame based on incremental dynamic analysis and fragility analysis. Journal of Chongqing University, 42(5): 37—45. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    周晓洁, 李忠献, 续丹丹等, 2015. 柔性连接填充墙框架结构抗震性能试验. 天津大学学报(自然科学与工程技术版), 48(2): 155—166

    Zhou X. J. , Li Z. X. , Xu D. D. , et al. , 2015. Experiment on seismic behavior of flexible connection masonry infilled frame structure. Journal of Tianjin University (Science and Technology), 48(2): 155—166. (in Chinese)
    Penava D. , Sarhosis V. , Kožar I. , et al. , 2018. Contribution of RC columns and masonry wall to the shear resistance of masonry infilled RC frames containing different in size window and door openings. Engineering Structures, 172: 105—130. doi: 10.1016/j.engstruct.2018.06.007
    Peng Q. M. , Zhou X. J. , Yang C. H. , 2018. Influence of connection and constructional details on masonry-infilled RC frames under cyclic loading. Soil Dynamics and Earthquake Engineering, 108: 96—110. doi: 10.1016/j.soildyn.2018.02.009
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  8
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-25
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回