• ISSN 1673-5722
  • CN 11-5429/P

伊朗活动构造发育特征

刘志成 徐伟 王继 王丽泽 高战武

刘志成,徐伟,王继,王丽泽,高战武,2023. 伊朗活动构造发育特征. 震灾防御技术,18(3):518−535. doi:10.11899/zzfy20230309. doi: 10.11899/zzfy20230309
引用本文: 刘志成,徐伟,王继,王丽泽,高战武,2023. 伊朗活动构造发育特征. 震灾防御技术,18(3):518−535. doi:10.11899/zzfy20230309. doi: 10.11899/zzfy20230309
Liu Zhicheng, Xu Wei, Wang Ji, Wang Lize, Gao Zhanwu. Characteristic features on Iranian Active Tectonics[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 518-535. doi: 10.11899/zzfy20230309
Citation: Liu Zhicheng, Xu Wei, Wang Ji, Wang Lize, Gao Zhanwu. Characteristic features on Iranian Active Tectonics[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 518-535. doi: 10.11899/zzfy20230309

伊朗活动构造发育特征

doi: 10.11899/zzfy20230309
基金项目: 中国科学院战略性先导科技专项(XDA2007030204)
详细信息
    作者简介:

    刘志成,男,生于1990年。高级工程师。主要从事活动构造和地震地质研究工作。E-mail:chengchengzhi@126.com

Characteristic features on Iranian Active Tectonics

  • 摘要: 伊朗是地震灾害频发的国家之一,有丰富的历史地震记载。按照构造特征与地震活动性的差异可将伊朗划分为6个地震构造区,包括北部的厄尔布尔士构造区、南部的扎格罗斯构造区和莫克兰构造区、中部的中伊朗块体构造区、大不里士构造区以及科佩特构造区,本文简要介绍了各构造区主要活动构造的基本特征和相应地震活动。受新生代阿拉伯板块与欧亚板块碰撞控制,伊朗地区处于挤压构造环境,活动构造以走滑和逆断-褶皱变形为主。根据活动构造特征和地震记录,伊朗地区的主要活动(断裂)构造具有发生7~7.5级地震的发震能力,莫克兰俯冲带具有发生≥8.0级地震的发震能力。伊朗北部主要城市德黑兰和大不里士面临着严峻的地震灾害风险,德黑兰北断裂带和大不里士断裂分别是威胁2个城市的主要活动断裂。伊朗的活动构造研究和防震减灾工作较为薄弱,可进一步加强历史地震与古地震研究、城市活动断层 探测、活断层避让等工作。伊朗高原是研究青藏高原新生代演化的参照模型,中-伊两国都面临着长期的地震风险,两国之间有必要加强防震减灾国际合作,中国研究者可以更广泛地参与伊朗地区的活动构造研究。
  • 图  1  伊朗地区构造背景

    Figure  1.  Tectonic setting of Iran and adjacent areas

    图  2  伊朗地区主要活动构造及地震震源机制解

    Figure  2.  Major active tectonics and earthquake focal mechanisms in Iran

    图  3  厄尔布尔士构造区主要活动构造展布图

    Figure  3.  Major active tectonics in Alborz tectonic province

    图  4  厄尔布尔士构造区主要地震事件时空分布特征

    Figure  4.  Map showing the spatial-temporal distribution of major earthquakes in Alborz tectonic province

    图  5  扎格罗斯构造区主要活动构造与地震活动特征

    Figure  5.  Major active tectonics and regional seismicity of Zagros tectonic province

    图  6  中伊朗块体构造区活动断裂展布图

    Figure  6.  Major active tectonics in Central Iranian block tectonic province

    图  7  伊朗西北部地震构造图

    Figure  7.  Major active tectonics and earthquakes in NW Iran

    图  8  科佩特构造区活动构造及主要地震事件

    Figure  8.  Major active tectonics and earthquakes in Kopeh Dagh tectonic province

    图  9  莫克兰俯冲带构造简图

    Figure  9.  Simplified tectonic map of Makran subduction zone

    图  10  伊朗及邻区晚新生代构造演化示意图

    Figure  10.  Schematic map illustrating the late Cenozoic tectonic reorganization of Iran and adjacent areas

    表  1  伊朗地区主要活动构造特征一览表

    Table  1.   Characteristics of major active tectonics in Iran

    编号 断裂名称 英文名称 性质 走向 长度/km 累积位
    错/km
    滑动速率/(mm·a−1 地震活动
    水平 垂直
    F1 哈扎尔断裂 Khazar 逆断 V型 >500 2.0±0.5 1809年M6.5;2004年5月28日MW6.2
    F2 鲁德巴尔断裂 Rudbar 左旋走滑 NW 80 1.0 1990年6月20日MW7.3(>80 km)
    F3 加兹温北断裂 Qazvin 逆断 NWW-NW 60 1119年12月10日M6.5
    F4 德黑兰北断裂带 North Tehran 左旋逆断 V型 >120 1.0~9.5 NE1177年5月1-30日M7.1?
    F5 莫沙断裂 Mosha 左旋逆断 EW弧形 200 3.0~6.5 2.0 958年2月23M7.1?;1665年6-7月M6.5;1830年3月27日M7.0
    F6 塔莱甘断裂 Taleghan 左旋正断 EW 80 0.45(V) 0.6~1.6 0.5 958年2月23日 M7.1*?
    F7 菲鲁兹库赫断裂 Firzuzkuh 左旋走滑 NNE 55 1.1~2.2 763–819年M7.1*?;
    1990年1月20日MW5.9
    F8 阿斯塔内断裂 Astaneh 左旋走滑 NE-EW >100 1.7~2.2 12 ka以来3次古地震事件,
    最新事件对应856年M7.2*?
    F9 达姆甘断裂 Damghan 左旋走滑 NE-EW >80 856年12月22日M7.2?
    F10 阿卜尔断裂 Abr 左旋走滑 NE 95 3.2±0.5 无强震资料
    F11 希季断裂 Khij 左旋走滑 NE 55 1.0~2.4 0.07 无强震资料
    F12 扎格罗斯主近断裂 Zagros Main Recent 右旋走滑 NW >600 16~50 3.5~12.5 1909年1月23日MW7.4(>40);
    1957年12月13日MW6.8;
    1958年8月16日MW6.6(20)
    F13 卡泽伦断裂 Kazerun 右旋走滑 N-S 300 >8 S 2.5~4.0;M 1.5~3.5 5~6级地震活动
    F14 多鲁内断裂 Doruneh 左旋走滑 EW弧形 400 5.3±1.7 13世纪以来无强震资料
    F15 巴亚兹断裂 Dasht-e Bayaz 左旋走滑 EW 120 4~5 >2.5 1968年8月31日MW7.1(80);
    1979年11月27日MW7.1(68)
    F16 阿比兹断裂 Abiz 右旋走滑 NNW 125 1936年6月30日MW6.0;1979年
    11月14日MW6.6(20);1997年5月
    10日MW7.2(125)
    F17 扎黑丹断裂 Zahedan 右旋走滑 N-S 150 13~20 断裂北端逆断裂1994年
    2月23日MW6.2
    F18 内赫东断裂 EastNeh 右旋走滑 N-S 200 50 N 1.75~2.5;S 1.0~2.5 无强震资料
    F19 内赫西断裂 WestNeh 右旋走滑 N-S 200 10 1.0~5.0 无强震资料
    F20 奈班德断裂 Nayband 右旋走滑 N-S 290 2~4 1.8±0.7 6.5 ka*,6.7 ka*,<0.74 ka*;断裂以北塔巴斯1978年9月16日MW7.3
    F21 高克断裂 Gowk 右旋走滑 NNW >150 12~15 3.8~5.7 1981年6月11日MW6.6(15);
    1981年7月28日MW7.0(65);
    1998年3月14日MW6.6(23)
    F22 萨卜扎瓦兰断裂带 Sabzevran-Jiroft 右旋逆断 N-S 150 5.7±1.7 无强震资料
    F23 代赫希尔断裂 Dehshir 右旋走滑 NNW 400 65±15 1.2±0.3 2.8±1.4 ka,~2.0±0.2 ka*,
    6000年复发周期
    F24 阿纳尔断裂 Anar 右旋走滑 NNW 200 25±5 >0.8±0.1 9.8±2.0,6.8±1.0,4.4±0.8 ka*,2000~5000年复发周期
    F25 拉夫桑詹断裂 Rafsanjan 右旋走滑 NW 200 0.4 无强震资料
    F26 库赫博南断裂 Kuh Banan 右旋走滑 NNW 180 5~7 1.0~2.0 1933年11月28日MW6.2;1977年
    12月19日MW5.9 (19.5)
    F27 大不里士北断裂 North Tabriz 右旋走滑 NW >120 20~25 NW 6.5~7.3 SE 1721年4月26日M7.3(>35);NW 1780年1月8日M7.4(>42)
    F28 阿哈尔断裂 Ahar 右旋走滑 EW >150 1.9±0.1 2012年8月11日MW6.4,6.2(13)
    F29 萨勒马斯断裂 Salmas 右旋走滑 NW-NNW 60 1930年5月6日MW7.1(16~30)
    F30 马拉盖断裂 Maragheh 右旋走滑 NW-NNW >110 无强震资料
    F31 古昌断裂 Quchan 右旋走滑 NNW >130 15.5 4.3±0.6 古昌区域1851,1871,1893,1895年M~7.0
    F32 巴甘断裂 Baghan 右旋走滑 NNW 80 9.8 2.8±1.0 1929年5月1日MW7.2(74)
    F33 内沙布尔断裂带 Neyshabur 右旋逆断 NW 90 f 2.4±0.5 2.8±0.6 内沙布尔区域1209,1270,
    1389,1405年M>7.0
    F34 马什哈德断裂 Mashahad 右旋走滑 NW 125 1.3±0.1 1673年7月30日M6.6
    F35 米纳卜断裂带 Minab-Zendan 右旋逆断 N-NNW 250 4.7±2.0
    (6.3±2.3)
    无强震资料
    注:1.断裂中文名称主要依据中国地图出版社发行的世界分国地图册,个别名称参照已有地名翻译,中文名称只保留首个地名;英文名称为波斯语拉丁转写的简化,并省略了断裂(带)对应的英文fault(zone)。累积位错主要为水平位错,仅塔莱甘断裂为垂直位错。各断裂研究资料见正文。
    2.滑动速率一栏,数值前的英文字母表示断裂的不同段落,如N表示北段,M表示中段,断裂带的滑动速率为分支断裂的累加速率。
    3.地震活动一栏,日期前的字母表示断裂段落,震级之后括号内数字为同震地表破裂带的长度,单位为km,同震地表破裂资料来自Ghassemi(2016);问号(?)表示存在争议或证据不充分,星号(*)表示探槽古地震事件;无强震资料指无6.0级以上地震记录或记载;“区域”指这一地区记载的地震事件,发震构造可能涉及多条活动断裂。
    4.历史地震资料主要依据Berberian(2014),通常为里氏震级,需要特别注意伊朗历史地震的震级采用小数表示。
    下载: 导出CSV
  • 陈学忠, 许建东, 2004.2003年12月26日伊朗巴姆地震. 国际地震动态, (2): 21—23 doi: 10.3969/j.issn.0253-4975.2004.02.006

    Chen X. Z. , Xu J. D. , 2004. An earthquake occurred in bam of Iran on December 26, 2003. Recent Developments in World Seismology, (2): 21—23. (in Chinese) doi: 10.3969/j.issn.0253-4975.2004.02.006
    代欢欢, 陈俊华, 方尹, 2017.1986年~2016年伊朗人口空间分布格局演变特征. 世界地理研究, 26(3): 29—38 doi: 10.3969/j.issn.1004-9479.2017.03.004

    Dai H. H. , Chen J. H. , Fang Y. , 2017. Evolution of spatial pattern of province-level population distribution in Iran during 1986-2016. World Regional Studies, 26(3): 29—38. (in Chinese) doi: 10.3969/j.issn.1004-9479.2017.03.004
    邓起东, 张裕明, 许桂林等, 1979. 中国构造应力场特征及其与板块运动的关系. 地震地质, 1(1): 11—22

    Deng Q. D. , Zhang Y. M. , Xu G. L. , et al. , 1979. On the tectonic stress field in China and its relation to plate movement. Seismology and Geology, 1(1): 11—22. (in Chinese)
    邓起东, 卢造勋, 杨主恩, 2007. 城市活动断层探测和断层活动性评价问题. 地震地质, 29(2): 189—200 doi: 10.3969/j.issn.0253-4967.2007.02.001

    Deng Q. D. , Lu Z. X. , Yang Z. E. , 2007. Remarks on urban active faults exploration and associated activity assessment. Seismology and Geology, 29(2): 189—200. (in Chinese) doi: 10.3969/j.issn.0253-4967.2007.02.001
    邓起东, 闻学泽, 2008. 活动构造研究——历史、进展与建议. 地震地质, 30(1): 1—30 doi: 10.3969/j.issn.0253-4967.2008.01.002

    Deng Q. D. , Wen X. Z. , 2008. A review on the research of active tectonics——history, progress and suggestions. Seismology and Geology, 30(1): 1—30. (in Chinese) doi: 10.3969/j.issn.0253-4967.2008.01.002
    刘小兵, 温志新, 贺正军等, 2019. 中东扎格罗斯盆地: 沿走向变化的构造及油气特征. 岩石学报, 35(4): 1269—1278 doi: 10.18654/1000-0569/2019.04.19

    Liu X. B. , Wen Z. X. , He Z. J. , et al. , 2019. Zagros basin in Middle East: along-strike variations of structure and petroleum accumulation characteristics. Acta Petrologica Sinica, 35(4): 1269—1278. (in Chinese) doi: 10.18654/1000-0569/2019.04.19
    王剑, 赵汝敏, 谢楠等, 2016. 扎格罗斯前陆盆地构造样式与油气成藏规律. 海洋地质与第四纪地质, 36(2): 143—151 doi: 10.16562/j.cnki.0256-1492.2016.02.016

    Wang J. , Zhao R. M. , Xie N. , et al. , 2016. Structural style of Zagros foreland basin and its bearing on oil and gas accumulation. Marine Geology & Quaternary Geology, 36(2): 143—151. (in Chinese) doi: 10.16562/j.cnki.0256-1492.2016.02.016
    王卫民, 郝金来, 何建坤等, 2018.2013年巴基斯坦俾路支MW7.7地震震源过程研究. 地球物理学报, 61(3): 872—879 doi: 10.6038/cjg2018L0769

    Wang W. M. , Hao J. L. , He J. K. , et al. , 2018. Rupture process of the 2013, Balochistan MW7.7 earthquake, Pakistan. Chinese Journal of Geophysics, 61(3): 872—879. (in Chinese) doi: 10.6038/cjg2018L0769
    文鑫涛, 李华玥, 段乙好等, 2021.2020年中国大陆地震灾害损失述评. 震灾防御技术, 16(4): 651—656 doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104006

    Wen X. T. , Li H. Y. , Duan Y. H. , et al. , 2021. Earthquake disasters loss on Chinese mainland in 2020. Technology for Earthquake Disaster Prevention, 16(4): 651—656. (in Chinese) doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104006
    徐锡伟, 2006. 活动断层、地震灾害与减灾对策问题. 震灾防御技术, 1(1): 7—14 doi: 10.3969/j.issn.1673-5722.2006.01.002

    Xu X. W. , 2006. Active faults, associated earthquake disaster distribution and policy for disaster reduction. Technology for Earthquake Disaster Prevention, 1(1): 7—14. (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.01.002
    张洪瑞, 侯增谦, 2018. 大陆碰撞带成矿作用: 年轻碰撞造山带对比研究. 中国科学: 地球科学, 48(12): 1629—1654.

    Zhang H. R. , Hou Z. Q. , 2018. Metallogenesis within continental collision zones: comparisons of modern collisional orogens. Science China Earth Sciences, 61(12): 1737—1760.
    张培震, 张会平, 郑文俊等, 2014. 东亚大陆新生代构造演化. 地震地质, 36(3): 574—585 doi: 10.3969/j.issn.0253-4967.2014.03.003

    Zhang P. Z. , Zhang H. P. , Zheng W. J. , et al. , 2014. Cenozoic tectonic evolution of continental eastern Asia. Seismology and Geology, 36(3): 574—585. (in Chinese) doi: 10.3969/j.issn.0253-4967.2014.03.003
    张裕明, 汪良谋, 董瑞树等, 1981. 亚欧地震构造图说明书. 北京: 地图出版社, 1—33

    Zhang Y. M., Wang L. M., Dong R. S., et al., 1981. The instruction for seismotectonic map of Asia and Europe. Beijing: Cartographic Publishing House, 1—33. (in Chinese)
    郑剑东, 1990. 伊朗地震考察简况. 地震地质, 12(4): 380—381

    Zheng J. D. , 1990. Brief investigation on the 1990 earthquake in Iran. Seismology and Geology, 12(4): 380—381. (in Chinese)
    Alipoor R., Zaré M., Ghassemi M. R., 2012. Inception of activity and slip rate on the Main Recent Fault of Zagros Mountains, Iran. Geomorphology, 175—176: 86—97.
    Allen M. B. , Ghassemi M. R. , Shahrabi M. , et al. , 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology, 25(5): 659—672. doi: 10.1016/S0191-8141(02)00064-0
    Allen M. B., 2010. Roles of strike-slip faults during continental deformation: examples from the active Arabia–Eurasia collision. In: Kusky T. M., Zhai M. G., Xiao W., eds., The Evolving Continents: Understanding Processes of Continental Growth. London: The Geological Society, 338: 329—344.
    Allen M. B. , Kheirkhah M. , Emami M. H. , et al. , 2011. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone. Geophysical Journal International, 184(2): 555—574. doi: 10.1111/j.1365-246X.2010.04874.x
    Ambraseys N. N., Melville C. P., 1982. A history of Persian earthquakes. Cambridge: Cambridge University Press, 1—219.
    Authemayou C. , Chardon D. , Bellier O. , et al. , 2006. Late Cenozoic partitioning of oblique plate convergence in the Zagros fold-and-thrust belt (Iran). Tectonics, 25(3): TC3002.
    Authemayou C. , Bellier O. , Chardon D. , et al. , 2009. Quaternary slip-rates of the Kazerun and the Main Recent Faults: active strike-slip partitioning in the Zagros fold-and-thrust belt. Geophysical Journal International, 178(1): 524—540. doi: 10.1111/j.1365-246X.2009.04191.x
    Barnhart W. D. , Hayes G. P. , Samsonov S. V. , et al. , 2014. Breaking the oceanic lithosphere of a subducting slab: the 2013 Khash, Iran earthquake. Geophysical Research Letters, 41(1): 32—36. doi: 10.1002/2013GL058096
    Berberian M., 1981. Active faulting and tectonics of Iran. In: Gupta H. K., Delany F. M., eds., Zagros Hindu Kush Himalaya Geodynamic Evolution. Washington D. C. USA: American Geophysical Union, 33—69.
    Berberian M., 1995. Master “blind” thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics. Tectonophysics, 241(3—4): 193—195, 197, 199—224.
    Berberian M. , Walker R. , 2010. The Rudbār MW 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’, Iran. Geophysical Journal International, 182(3): 1577—1602. doi: 10.1111/j.1365-246X.2010.04705.x
    Berberian M., 2014. Earthquakes and coseismic surface faulting on the Iranian plateau: a historical, social, and physical approach. Amsterdam: Elsevier, 1—714.
    Berberian M., Yeats R. S., 2017. Tehran: an earthquake time bomb. In: Sorkhabi R., ed., Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions. Boulder: The Geological Society of America, 87—170.
    Byrne D. E. , Sykes L. R. , Davis D. M. , 1992. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone. Journal of Geophysical Research, 97(B1): 449—478. doi: 10.1029/91JB02165
    Copley A. , Faridi M. , Ghorashi M. , et al. , 2014. The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish–Iranian Plateau. Geophysical Journal International, 196(1): 15—21. doi: 10.1093/gji/ggt379
    Danciu L. , Şeşetyan K. , Demircioglu M. , et al. , 2018. The 2014 earthquake model of the Middle East: seismogenic sources. Bulletin of Earthquake Engineering, 16(8): 3465—3496. doi: 10.1007/s10518-017-0096-8
    Farbod Y. , Shabanian E. , Bellier O. , et al. , 2016. Spatial variations in late Quaternary slip rates along the Doruneh Fault System (Central Iran). Tectonics, 35(2): 386—406. doi: 10.1002/2015TC003862
    Faridi M. , Nazari H. , Burg J. P. , et al. , 2019. Structural characteristics, paleoseismology and slip rate of the Qoshadagh fault, northwest of Iran. Geotectonics, 53(2): 280—297. doi: 10.1134/S0016852119020031
    Fattahi M. , Walker R. T. , Talebian M. , et al. , 2014. Late Quaternary active faulting and landscape evolution in relation to the Gowk Fault in the South Golbaf Basin, S. E. Iran. Geomorphology, 204: 334—343. doi: 10.1016/j.geomorph.2013.08.017
    Fattahi M. , Walker R. , Khatib M. M. , et al. , 2015. Determination of slip-rate by optical dating of lake bed sediments from the Dasht-E-Bayaz fault, NE Iran. Geochronometria, 42(1): 148—157.
    Foroutan M. , Meyer B. , Sébrier M. , et al. , 2014. Late Pleistocene-Holocene right slip rate and paleoseismology of the Nayband fault, western margin of the Lut block, Iran. Journal of Geophysical Research: Solid Earth, 119(4): 3517—3560. doi: 10.1002/2013JB010746
    Ghassemi M. R. , 2016. Surface ruptures of the Iranian earthquakes 1900–2014: insights for earthquake fault rupture hazards and empirical relationships. Earth-Science Reviews, 156: 1—13. doi: 10.1016/j.earscirev.2016.03.001
    Ghods A. , Shabanian E. , Bergman E. , et al. , 2015. The Varzaghan–Ahar, Iran, Earthquake Doublet (MW 6.4, 6.2): implications for the geodynamics of northwest Iran. Geophysical Journal International, 203(1): 522—540. doi: 10.1093/gji/ggv306
    Ghorbani M., 2013. The economic geology of Iran: mineral deposits and natural resources. Dordrecht: Springer, 1—572.
    Hatzfeld D. , Molnar P. , 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 48(2): RG2005.
    Hessami K. , Pantosti D. , Tabassi H. , et al. , 2003. Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Annals of Geophysics, 46(5): 903—915.
    Hessami K. , Jamali F. , 2006. Explanatory notes to the map of major active faults of Iran. Journal of Seismology and Earthquake Engineering, 8(1): 1—11.
    Hoffmann G. , Grützner C. , Schneider B. , et al. , 2020. Large Holocene tsunamis in the northern Arabian Sea. Marine Geology, 419: 106068. doi: 10.1016/j.margeo.2019.106068
    Hollingsworth J. , Jackson J. , Walker R. , et al. , 2006. Strike-slip faulting, rotation, and along-strike elongation in the Kopeh Dagh mountains, NE Iran. Geophysical Journal International, 166(3): 1161—1177. doi: 10.1111/j.1365-246X.2006.02983.x
    Hollingsworth J. , Jackson J. , Walker R. , et al. , 2008. Extrusion tectonics and subduction in the eastern South Caspian region since 10 Ma. Geology, 36(10): 763—766. doi: 10.1130/G25008A.1
    Hollingsworth J. , Nazari H. , Ritz J. F. , et al. , 2010. Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left-lateral Astaneh fault system during the great 856 A. D. Qumis earthquake. Journal of Geophysical Research, 115(B12): B12313. doi: 10.1029/2009JB007185
    Jackson J. , Priestley K. , Allen M. , et al. , 2002. Active tectonics of the South Caspian Basin. Geophysical Journal International, 148(2): 214—245.
    Javidfakhr B., Bellier O., Shabanian E., et al., 2011. Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): geodynamic implications for NNE Iran. Journal of Geodynamics, 52(3—4): 290—303.
    Karasözen E. , Nissen E. , Bergman E A. , et al. , 2019. Seismotectonics of the Zagros (Iran) from orogen-wide, calibrated earthquake relocations. Journal of Geophysical Research: Solid Earth, 124(8): 9109—9129. doi: 10.1029/2019JB017336
    Kopp C., Fruehn J., Flueh E. R., et al., 2000. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329(1—4): 171—191.
    Landgraf A. , Ballato P. , Strecker M. R. , et al. , 2009. Fault-kinematic and geomorphic observations along the North Tehran Thrust and Mosha Fasham Fault, Alborz mountains Iran: implications for fault-system evolution and interaction in a changing tectonic regime. Geophysical Journal International, 177(2): 676—690. doi: 10.1111/j.1365-246X.2009.04089.x
    Meyer B. , Le Dortz K. , 2007. Strike-slip kinematics in Central and Eastern Iran: estimating fault slip-rates averaged over the Holocene. Tectonics, 26(5): TC5009.
    Mirzaei N., Gheitanchi M. R., Naserieh S., et al., 2002. Basic parameters of earthquakes in Iran. Tehran: Daneshnegar Publications, 1—183.
    Mouthereau F., Lacombe O., Vergés J., 2012. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532—535: 27—60.
    Nazari H. , Ritz J. F. , Salamati R. , et al. , 2009. Morphological and palaeoseismological analysis along the Taleghan fault (Central Alborz, Iran). Geophysical Journal International, 178(2): 1028—1041. doi: 10.1111/j.1365-246X.2009.04173.x
    Nazari H. , Ritz J. F. , Walker R. T. , et al. , 2014. Palaeoseismic evidence for a medieval earthquake, and preliminary estimate of late Pleistocene slip-rate, on the Firouzkuh strike-slip fault in the Central Alborz region of Iran. Journal of Asian Earth Sciences, 82: 124—135. doi: 10.1016/j.jseaes.2013.12.018
    Nazari H. , Ritz J. F. , Burg J. P. , et al. , 2021. Active tectonics along the Khazar fault (Alborz, Iran). Journal of Asian Earth Sciences, 219: 104893. doi: 10.1016/j.jseaes.2021.104893
    Nissen E. , Tatar M. , Jackson J. A. , et al. , 2011. New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophysical Journal International, 186(3): 928—944. doi: 10.1111/j.1365-246X.2011.05119.x
    Nissen E. , Ghods A. , Karasözen E. , et al. , 2019. The 12 November 2017 MW 7.3 Ezgeleh-Sarpolzahab (Iran) earthquake and active tectonics of the Lurestan Arc. Journal of Geophysical Research: Solid Earth, 124(2): 2124—2152. doi: 10.1029/2018JB016221
    Page W. D., Alt J. N., Cluff L. S., et al., 1979. Evidence for the recurrence of large-magnitude earthquakes along the Makran Coast of Iran and Pakistan. Tectonophysics, 52(1—4): 533—547.
    Penney C. , Tavakoli F. , Saadat A. , et al. , 2017. Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. Geophysical Journal International, 209(3): 1800—1830. doi: 10.1093/gji/ggx126
    Rashidi A. , Dutykh D. , Shomali Z. H. , et al. , 2020. A review of tsunami hazards in the Makran Subduction Zone. Geosciences, 10(9): 372. doi: 10.3390/geosciences10090372
    Regard V. , Bellier O. , Thomas J. C. , et al. , 2005. Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran. Geophysical Journal International, 162(1): 177—203. doi: 10.1111/j.1365-246X.2005.02558.x
    Ritz J. F. , Nazari H. , Ghassemi A. , et al. , 2006. Active transtension inside central Alborz: a new insight into northern Iran–southern Caspian geodynamics. Geology, 34(6): 477—480. doi: 10.1130/G22319.1
    Rizza M. , Vernant P. , Ritz J. F. , et al. , 2013. Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz fault (Iran). Geophysical Journal International, 193(3): 1083—1094. doi: 10.1093/gji/ggt041
    Şeşetyan K. , Danciu L. , Demircioğlu Tümsa M. B. , et al. , 2018. The 2014 seismic hazard model of the Middle East: overview and results. Bulletin of Earthquake Engineering, 16(8): 3535—3566. doi: 10.1007/s10518-018-0346-4
    Shabanian E. , Siame L. , Bellier O. , et al. , 2009. Quaternary slip rates along the northeastern boundary of the Arabia-Eurasia collision zone (Kopeh Dagh Mountains, Northeast Iran). Geophysical Journal International, 178(2): 1055—1077. doi: 10.1111/j.1365-246X.2009.04183.x
    Shabanian E. , Bellier O. , Siame L. , et al. , 2012. The Binalud Mountains: a key piece for the geodynamic puzzle of NE Iran. Tectonics, 31(6): TC6003.
    Solaymani Azad S., Ritz J. F., Abbassi M. R., 2011. Left-lateral active deformation along the Mosha–North Tehran fault system (Iran): morphotectonics and paleoseismological investigations. Tectonophysics, 497(1—4): 1—14.
    Stern R. J. , Moghadam H. S. , Pirouz M. , et al. , 2021. The geodynamic evolution of Iran. Annual Review of Earth and Planetary Sciences, 49: 9—36. doi: 10.1146/annurev-earth-071620-052109
    Stöcklin J. , 1968. Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7): 1229—1258.
    Taghipour K., Khatib M. M., Heyhat M., et al., 2018. Evidence for distributed active strike-slip faulting in NW Iran: the Maragheh and Salmas fault zones. Tectonophysics, 742—743: 15—33.
    Talebian M. , Jackson J. , 2002. Offset on the Main Recent Fault of NW Iran and implications for the Late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophysical Journal International, 150(2): 422—439. doi: 10.1046/j.1365-246X.2002.01711.x
    Talebian M. , Jackson J. , 2004. A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3): 506—526. doi: 10.1111/j.1365-246X.2004.02092.x
    Tatar M. , Jackson J. , Hatzfeld D. , et al. , 2007. The 2004 May 28 Baladeh earthquake (MW 6.2) in the Alborz, Iran: overthrusting the South Caspian Basin margin, partitioning of oblique convergence and the seismic hazard of Tehran. Geophysical Journal International, 170(1): 249—261. doi: 10.1111/j.1365-246X.2007.03386.x
    Vernant P. , Nilforoushan F. , Hatzfeld D. , et al. , 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1): 381—398. doi: 10.1111/j.1365-246X.2004.02222.x
    Walker R. , Jackson J. , 2004 a. Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics, 23(5): TC5010.
    Walker R. , Jackson J. , Baker C. , 2004 b. Active faulting and seismicity of the Dasht-e-Bayaz region, eastern Iran. Geophysical Journal International, 157(1): 265—282. doi: 10.1111/j.1365-2966.2004.02179.x
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  88
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回