Characteristic features on Iranian Active Tectonics
-
摘要: 伊朗是地震灾害频发的国家之一,有丰富的历史地震记载。按照构造特征与地震活动性的差异可将伊朗划分为6个地震构造区,包括北部的厄尔布尔士构造区、南部的扎格罗斯构造区和莫克兰构造区、中部的中伊朗块体构造区、大不里士构造区以及科佩特构造区,本文简要介绍了各构造区主要活动构造的基本特征和相应地震活动。受新生代阿拉伯板块与欧亚板块碰撞控制,伊朗地区处于挤压构造环境,活动构造以走滑和逆断-褶皱变形为主。根据活动构造特征和地震记录,伊朗地区的主要活动(断裂)构造具有发生7~7.5级地震的发震能力,莫克兰俯冲带具有发生≥8.0级地震的发震能力。伊朗北部主要城市德黑兰和大不里士面临着严峻的地震灾害风险,德黑兰北断裂带和大不里士断裂分别是威胁2个城市的主要活动断裂。伊朗的活动构造研究和防震减灾工作较为薄弱,可进一步加强历史地震与古地震研究、城市活动断层 探测、活断层避让等工作。伊朗高原是研究青藏高原新生代演化的参照模型,中-伊两国都面临着长期的地震风险,两国之间有必要加强防震减灾国际合作,中国研究者可以更广泛地参与伊朗地区的活动构造研究。Abstract: Located in the Alpine-Himalaya seismic zone, Iran suffers from intense earthquake disasters, and there is a wealthy and diverse record of historical earthquakes which can go back for more than two thousand years witnessed by the Iranian civilization. On the basis of tectonic feature, geomorphology and seismicity, we divide Iran and adjacent areas into six tectonic provinces, namely Alborz seismic region in the north, Zagros region in the southwest, Central Iranian block region, Makran region in the southeast, Tabriz region in the northwest and Kopeh Dagh region in the northeast. Then, we briefly present the basic characteristics of major active tectonics in each seismic regions accompanied by main seismic activities. Dictated by the collision-subduction between Arabian plate and Eurasia plate in Cenozoic, Iranian active tectonics are feathered by widespread regional strike-slip and reverse faults which define a compressive kinematic regime. According to the nature of active tectonics and seismicity, major active tectonics in mainland Iran are capable of generating earthquakes with magnitudes of MW7.0~7.5. Meanwhile, the Makran subduction zone could bear great earthquakes with magnitudes larger than MW8.0. Cities in northern Iran, especially Tehran and Tabriz, are confronted with severe earthquake disaster risk. The Tehran North fault zone and Tabriz North fault are the major active faults that threaten Tehran and Tabriz, respectively. The current active tectonic research and earthquake disaster relief work in Iran is insufficient, thus it is strongly recommended that more efforts, such as paleo-seismological research, active fault survey and prospect in urban areas, active fault avoidance strategy, should be applied throughout the whole country. Iranian plateau, built during the continent collision between Eurasia plate and Arabia plate, can serve as a reference model of Tibetan Plateau, which will no doubt improve our knowledge on the Cenozoic tectonic evolutionary history of mainland China. China and Iran both face perpetual earthquake disaster risks, which calls for a more robust international cooperation in the field of protection against and mitigation of earthquake disasters. China could participate extensively in Iranian active tectonic researches and earthquake mitigation work.
-
Key words:
- Iranian plateau /
- Active tectonics /
- Seismicity /
- Alborz tectonic province /
- Zagros tectonic province
-
引言
双层排架墩在我国桥梁工程中获得越来越广泛的应用,但其地震风险较高(Kunnath等,1995;Marin等,2006;庄卫林等,2009),如1989年美国Loma Prieta 地震中,包括Cypress高架桥在内的众多双层高架桥梁倒塌;1995年日本Kobe地震中,Hanshin双层高架桥排架墩发生严重破坏;2022年日本福岛地震中,新干线部分双柱式桥墩发生严重破坏。为研究双层桥梁排架墩地震破坏机理并提出可靠的抗震措施,张洁等(2017)完成了2个双层排架桥墩模型拟静力试验,研究结果表明,基于性能的抗震设计可有效控制横梁和节点损伤,使塑性铰出现在桥墩墩底,实现“强梁弱柱”的抗震设计要求。应注意的是,基于延性抗震设计理论的排架墩在强震作用下,桥墩或系梁中将形成塑性铰耗散地震能量,从而达到“大震不倒”的抗震设计要求,不可避免地造成排架墩严重损伤,甚至引起较大的震后残余位移,震后修复工作困难甚至需推倒重建(Fujino等,2005)。随着对交通基础设施更高的抗震要求,近年来,众多学者提出可恢复功能的摇摆桥梁结构体系(孙治国等,2017;石岩等,2021;Wang等,2021;Jia等,2021)。现阶段对摇摆-自复位桥墩的研究可总结为:将桥墩墩柱与桥台和盖梁连接处截断形成摇摆截面,并设置可更换耗能构件耗散地震能量,设置无粘结预应力筋将摇摆体系连接为整体并提供自复位能力。
孙治国等(2020,2021)提出以构件预制拼装为基础,基于强震作用下桥墩摇摆反应并设置无粘结预应力筋和耗能构件的RSC双层排架桥墩,完成了仅上层摇摆、仅下层摇摆、双层摇摆及普通双层排架墩模型的抗震性能分析。研究结果表明,在PGA为0.4 g近断层地震动作用下,RSC双层排架墩可有效减小强震作用下的损伤破坏。该研究以角钢作为外置耗能构件(Garlock等,2003;蔡小宁等,2012),但其存在一定不足之处,一方面是考虑到实际施工情况,限于角钢几何形状、尺寸,难以设置于圆形截面及不规则截面的桥墩。另一方面,角钢强度及耗能能力较弱、强震作用下易发生拉断破坏,难以满足大震下RSC排架墩抗倒塌设计需求。
为避免耗能角钢的上述不足,本文提出以可更换的钢管灌浆阻尼器(SGD)作为耗能构件(Bedriñana等,2021),以甘肃省武罐高速公路洛塘河双层高架桥为工程背景,基于OpenSeess数值模拟平台,建立设置SGD的RSC双层排架桥墩抗震数值分析模型。结合Bedriñana等(2021)研究成果完成SGD(编号为DT-T34-L260)试件拉伸-卸载循环试验,验证SGD建模方法的准确性。基于增量动力分析(IDA)研究外置SGD的RSC双层排架桥墩地震响应,并与外置角钢的RSC双层排架墩地震反应进行对比,为优化RSC双层排架墩桥梁抗震设计提供参考。
1. 外置SGD的RSC双层排架墩尺寸
1.1 SGD几何尺寸
本文选用的SGD阻尼器材料为低碳钢圆截面钢棒,如图1所示,SGD两端为带螺纹的伸长钢棒(以下简称“外伸钢棒”),长度为105 mm,直径Dde为20 mm。中间软钢部分长度Ldf为260 mm,直径Ddf为13 mm。软钢屈服强度fsy、抗拉强度fsu、弹性模量Es分别为360.8、563.6、2.043×105 MPa,屈服应变εsy和极限应变εsu分别为0.001 9和0.155 6。软钢部位外圈设置直径Ddt为34 mm、厚度tdt为2.3 mm的钢管,钢管与软钢之间浇筑水泥砂浆,砂浆抗压强度f'c为46.50 MPa,弹性模量为15 143 MPa,屈服应变为0.003 8。该阻尼器屈服变形的理念类似于小尺寸的防屈曲支撑(Yang等,2019),灌浆钢管可抑制SGD因受弯而产生屈曲。为保证非弹性应变集中在软钢部分,要求Ddf/Dde≤0.76,本文选用SGD的Ddf/Dde=0.65,符合要求。
1.2 双层排架墩几何尺寸
本文设计的RSC双层排架桥墩均采用装配式结构,底层预制桥墩与承台、底层盖梁间选用承插式连接;顶层为摇摆结构,桥墩与顶层、底层盖梁连接处均设置摇摆截面。排架墩几何尺寸为:顶层、底层桥墩有效高度分别为9 500、7 000 mm;顶层、底层桥墩墩柱均采用矩形截面,其截面尺寸分别为1 600 mm×1 800 mm、1 800 mm×2 000 mm;顶层、底层盖梁尺寸分别为1 700 mm×1 800 mm、2 000 mm×2 000 mm;顶层、底层桥墩墩柱配筋率分别为1.54%、1.57%。在RSC双层排架桥墩墩柱截面4个对称位置分别设置15束ΦS15.2无粘结预应力筋,对应顶层、底层桥墩截面预应力筋的配筋率分别为0.29%、0.23%。由预应力筋初始张拉应力引起的顶层、底层墩底轴压比分别为0.05、0.04;由桥墩上部主梁及桥墩自重引起的顶层、底层墩底轴压比分别为0.05、0.08。桥墩墩柱、盖梁均采用C30混凝土,纵筋采用直径为28 mm的HRB400钢筋。排架墩设计如图1所示。
2. 数值模型建立及验证
2.1 SGD数值模型建立
SGD软钢部位、外伸钢棒和钢管材料模拟均采用OpenSees中Steel 02本构模型,该模型可考虑重复荷载作用下钢材等向强化;钢管与软钢之间的水泥砂浆采用Concrete 04本构材料模型,该模型可考虑砂浆峰值抗压强度和峰值压应变及压碎时压应变,不考虑其受拉力学性能。软钢、外伸钢棒采用基于力的纤维梁柱单元模拟。为考虑钢管与水泥砂浆抗弯刚度,两者采用基于力的纤维梁柱单元模拟。模拟钢管与水泥砂浆的纤维梁柱单元与模拟软钢的纤维梁柱单元平行布置并采用TwoNodeLink单元连接,2个单元间在径向赋予极大刚度值,以模拟钢管与水泥砂浆对软钢受弯屈曲的约束作用,如图2所示。
2.2 RSC双层排架桥墩抗震数值模型
混凝土、钢筋和无粘结预应力筋分别采用OpenSees中的Concrete 01、Steel 02和Elastic-PP材料模型,其具体本构关系及参数设置参考孙治国等(2016)的研究。桥墩采用基于位移的纤维梁柱单元模拟,单元划分如图2(a)所示,盖梁采用线弹性纤维梁柱单元模拟,无粘结预应力筋采用Truss单元模拟。桥墩与盖梁和承台接缝处各设置5个零长度弹簧单元,采用单轴受压材料模型(Elastic-No Tension)模拟,弹簧单元受压刚度E根据经验公式计算:
$$ E = \frac{{{E_{\mathrm{c}}} \times A_{\mathrm{c}}}}{{L \times 5}}\theta $$ (1) 式中,Ec为混凝土受压弹性模量;Ac为桥墩截面面积;L为墩高;θ为经验系数,建议取值为2.0。
2.3 数值验证
Bedriñana等(2021)完成了一系列SGD试件拉伸-卸载试验,本文选择DT-T34-L260试件试验结果验证SGD建模方法的准确性。该试件加载模式如图3所示,试件通过特殊的连接夹具安装在试验机上。由试验现象及试验数据可知,试件在轴向应变约0.09之前表现出规则而稳定的滞回曲线。在此之后,出现弯曲屈曲,且屈曲点发生在软钢末端。DT试件在反复拉伸下由于低周疲劳和末端过度屈曲而断裂,断裂应变为0.113。
数值模拟与试验得到的力-轴向应变滞回曲线对比如图4所示,由图4可知,模拟结果和试验结果吻合良好,证明了SGD建模方法的准确性。需说明的是,试件DT-T34-L260水泥砂浆与软钢之间未做无粘结处理,试验过程中水泥砂浆和钢管承受了一定轴向应力,而数值模型中砂浆和钢管不承受轴向力,故试验强度略高于模拟值。
孙治国等(2020)的研究已验证了摇摆桥墩数值模型的准确性,本文不再赘述。
3. SGD连接方式及耗能分析
参考Marriott等(2009,2011)研究成果,设置SGD的RSC双层排架桥墩横桥向反应及SGD和桥墩连接如图5所示。SGD与桥墩连接处设置多个排列的特制夹具,以固定SGD并便于震后更换,夹具焊接于钢板上,钢板与墩柱采用高强螺栓连接。SGD与盖梁、承台之间采用特制夹具连接,夹具与盖梁、承台采用高强螺栓连接,并在盖梁、承台表层加置刚性垫板。上述连接可防止桥墩在地震过程中发生局部损伤,有效发挥SGD耗能作用。
为对比SGD与角钢耗能能力,定义耗能构件累计耗能(ΣW)与受力方向的截面面积之比为单位面积耗能ω,SGD与角钢单位面积耗能计算如下:
$$ {\omega _{{\mathrm{SGD}}}} = \frac{{4\displaystyle\sum {W_{{\mathrm{SGD}}}}}}{{\text{π} D_{{\mathrm{df}}}^2}} $$ (2) $$ {\omega _{\mathrm{a}}} = \frac{{\displaystyle\sum {W_{\mathrm{a}}}}}{{{t_{\mathrm{a}}}{L_{\mathrm{b}}}}} $$ (3) 式中,ΣWSGD与ΣWa分别为SGD和角钢累计耗能,ta和Lb分别为角钢单肢厚度和单肢长度,ωSGD和ωa分别为SGD和角钢单位面积耗能能力。
根据已有文献中DT-T34-L260试件与L8-34-4试件实测数据(Garlock等,2003;Bedriñana等,2021),计算2种耗能构件单位面积耗能,单位面积SGD和耗能角钢在反复荷载作用下的力-位移滞回曲线如图6所示,由图6可知,1 mm2 SGD耗能能力为160.63 kN·mm,1 mm2角钢耗能能力为15.89 kN·mm,即单位面积SGD耗能能力是单位面积角钢的10.11倍。
4. 排架墩增量动力分析
4.1 地震动选取
通过近断层地震动研究设置SGD的RSC双层排架桥墩地震反应,计算结果对于排架墩抗震能力分析是趋于危险的估计,目的是深入分析该类结构在强震作用下的抗震性能。本文选用台湾集集地震记录中7条具有显著速度脉冲的近断层地震动,如表1所示,阻尼比为0.05时各地震动放大系数β1如图7所示,地震动输入为横桥向。分析可得排架墩一阶自振周期为0.476 s,7条地震动对应的放大系数β1分别为1.54、0.96、1.77、2.72、2.72、1.98、1.98。
表 1 选取的地震动记录Table 1. Selected earthquake records编号 记录名称 断层距/km PGA/g NO. 1 TCU052-NS 1.84 0.49 NO. 2 TCU065-EW 2.49 0.79 NO. 3 TCU067-EW 1.11 0.50 NO. 4 TCU068-EW 3.01 0.51 NO. 5 TCU082-EW 4.47 0.23 NO. 6 TCU102-EW 1.19 0.30 NO. 7 TCU120-EW 9.87 0.23 4.2 排架墩IDA分析
定义耗能构件受力截面面积与桥墩截面面积之比为耗能构件设置比ρ,SGD与角钢设置比计算如下:
$$ {\rho _{{\mathrm{SGD}}}} = \frac{{n\text{π} D_{{\mathrm{df}}}^2}}{{4A}} $$ (4) $$ {\rho _{\text{a}}} = \frac{{n{t_{\mathrm{a}}}{L_{\mathrm{b}}}}}{A} $$ (5) 式中,n为摇摆截面设置耗能构件数量;ρSGD和ρa分别为SGD和角钢设置比。
选用ρSGD为0.29%设置SGD的RSC双层排架桥墩为研究对象,SGD平均分布在桥墩横桥向两侧。将7条地震动统一按PGA依次调幅为0.1、0.2、0.4、0.8 g,以对应7~9度及超过9度的抗震设防烈度下设计基本地震动加速度峰值。输入地震动,关注排架墩在不同强度地震动作用下的地震反应,包括顶层和底层最大层间位移角、钢管灌浆阻尼器(SGD)最大变形、无粘结预应力筋最大应力等。当层间位移角达到5%时,认为结构失效(孙治国等,2021);当无粘结预应力筋最大应力超过80%的抗拉强度即1 486.97 MPa时,认为预应力筋屈服失效。SGD屈服应变为0.019,拉断时名义极限应变为0.113(Bedriñana等,2021),根据Δ=εLdf可得出SGD屈服变形和名义极限变形分别为0.49、29.38 mm。
以PGA为0.4 g时NO.1和NO.7地震动输入下的分析结果为例,排架墩顶层左墩墩底一侧SGD轴向力-变形曲线如图8所示。由图8可知,SGD滞回曲线饱和,可有效提供耗能作用。
取7条地震动作用下的平均值,如表2所示。当PGA为0.1 g时,排架墩顶层、底层最大层间位移角分别为0.21%、0.03%;SGD最大变形为0.50 mm,已达到屈服并开始耗能。预应力筋最大应力为589.86 MPa,为名义屈服强度的39.67%。
表 2 设置SGD的RSC双层排架桥墩地震响应平均值Table 2. Average seismic response of the RSC double-deck bridge bents with SGD结构响应 PGA/g 0.1 0.2 0.4 0.8 顶层层间位移角/% 0.21 0.54 2.26 4.07 底层层间位移角/% 0.03 0.06 0.12 0.26 SGD最大变形/mm 0.50 2.20 15.70 26.53 预应力筋最大应力/MPa 589.86 630.32 886.17 1260.61 当PGA为0.2 g时,排架墩顶层、底层最大层间位移角分别为0.54%、0.06%;SGD最大变形为2.20 mm,为名义极限变形的7.49%;预应力筋最大应力为630.32 MPa,为名义屈服强度的42.39%。
当PGA为0.4 g时,排架墩顶层、底层最大层间位移角分别为2.26%、0.12%;SGD最大变形为15.70 mm,为名义极限变形的53.44%;预应力筋最大应力为886.17 MPa,为名义屈服强度的59.60%。
当PGA为0.8 g时,排架墩顶层、底层最大层间位移角分别为4.07%、0.26%;SGD最大变形为26.53 mm,为名义极限变形的90.30%;预应力筋最大应力为
1260.61 MPa,为名义极限强度的84.78%。4.3 与设置角钢的RSC双层排架墩抗震性能对比
对比设置角钢的RSC双层排架桥墩抗震性能,桥墩尺寸、配筋及材料选取与1.2节相同。参考孙治国等(2020)的研究,采用角钢的型号为L8-34-4,摇摆截面单侧设置4根角钢,即ρa为1.1%。分析可得设置角钢的RSC双层排架桥墩自振周期为0.481 s,对比4.2节设置SGD的RSC双层排架墩周期,设置角钢的RSC双层排架墩一阶自振周期略大。
仅对比9度抗震设防烈度下2种RSC双层排架桥墩地震响应,选用4.1节中的7条地震动,调幅PGA均为0.4 g。输入地震动后,对比分析结果,当PGA为0.4 g时,设置角钢的RSC双层排架桥墩顶层最大层间位移角为2.72%,角钢最大变形为22.89 mm,预应力筋最大应力为988.76 MPa。相对于设置角钢的RSC双层排架桥墩,设置SGD的RSC双层排架桥墩在PGA为0.4 g时的顶层层间位移角减小了16.9%,预应力筋最大应力减小了10.4%。Garlock等(2003)的研究给出角钢L8-34-4拉断时的极限变形为26.0 mm,即当PGA为0.4 g时,角钢最大变形为极限变形的88.04%,而SGD最大变形为极限变形的53.44%。
5. 结论
本文提出了采用仅上层摇摆结构形式的外置钢管灌浆阻尼器(SGD)的RSC双层排架桥墩。基于OpenSees数值模拟平台,建立设置SGD的RSC双层排架桥墩数值分析模型。对比SGD试件拉伸-卸载循环试验数据,验证数值模拟的准确性。对比了SGD与角钢单位面积耗能能力。选用台湾集集地震记录中7条具有特性的近断层地震动,基于IDA手段,分析不同地震动强度下排架墩地震反应,并对比相同构造尺寸设置角钢的RSC双层排架桥墩地震损伤情况,结论如下:
(1)SGD单位面积耗能能力是角钢的10.11倍,采用SGD较采用角钢具有更好的耗能能力。角钢屈服后会使转角处的角度增大,产生更大的变形,因此角钢变形耗能利用率有限。SGD受拉变形沿轴向产生,耗能利用率相比角钢高。
(2)在7组地震动作用下基于IDA得到排架墩地震响应平均值。当PGA为0.1 g时,SGD已屈服并开始耗能。当PGA为0.4 g时SGD最大变形为名义极限变形的53.44%,无粘结预应力筋最大应力为名义屈服强度的59.60%。当PGA为0.8 g时,SGD变形达到名义极限变形的90.30%,无粘结预应力筋应力未达到名义屈服强度。
(3)相对于同尺寸设置角钢的RSC双层排架桥墩,SGD设置比仅为角钢的26.4%。当地震动PGA为0.4 g时,对比2种桥墩的地震响应,设置SGD的RSC双层排架桥墩的顶层层间位移角、预应力筋最大应力分别减少16.9%、10.4%,并且角钢接近拉断,到达极限变形的88.04%,而SGD最大变形仅为名义极限变形的53.44%。
-
表 1 伊朗地区主要活动构造特征一览表
Table 1. Characteristics of major active tectonics in Iran
编号 断裂名称 英文名称 性质 走向 长度/km 累积位
错/km滑动速率/(mm·a−1) 地震活动 水平 垂直 F1 哈扎尔断裂 Khazar 逆断 V型 >500 − − 2.0±0.5 1809年M6.5;2004年5月28日MW6.2 F2 鲁德巴尔断裂 Rudbar 左旋走滑 NW 80 1.0 − − 1990年6月20日MW7.3(>80 km) F3 加兹温北断裂 Qazvin 逆断 NWW-NW 60 − − − 1119年12月10日M6.5 F4 德黑兰北断裂带 North Tehran 左旋逆断 V型 >120 1.0~9.5 − − NE1177年5月1-30日M7.1? F5 莫沙断裂 Mosha 左旋逆断 EW弧形 200 3.0~6.5 2.0 − 958年2月23M7.1?;1665年6-7月M6.5;1830年3月27日M7.0 F6 塔莱甘断裂 Taleghan 左旋正断 EW 80 0.45(V) 0.6~1.6 0.5 958年2月23日 M7.1*? F7 菲鲁兹库赫断裂 Firzuzkuh 左旋走滑 NNE 55 − 1.1~2.2 − 763–819年M7.1*?;
1990年1月20日MW5.9F8 阿斯塔内断裂 Astaneh 左旋走滑 NE-EW >100 − 1.7~2.2 − 12 ka以来3次古地震事件,
最新事件对应856年M7.2*?F9 达姆甘断裂 Damghan 左旋走滑 NE-EW >80 − − − 856年12月22日M7.2? F10 阿卜尔断裂 Abr 左旋走滑 NE 95 − 3.2±0.5 − 无强震资料 F11 希季断裂 Khij 左旋走滑 NE 55 − 1.0~2.4 0.07 无强震资料 F12 扎格罗斯主近断裂 Zagros Main Recent 右旋走滑 NW >600 16~50 3.5~12.5 − 1909年1月23日MW7.4(>40);
1957年12月13日MW6.8;
1958年8月16日MW6.6(20)F13 卡泽伦断裂 Kazerun 右旋走滑 N-S 300 >8 S 2.5~4.0;M 1.5~3.5 − 5~6级地震活动 F14 多鲁内断裂 Doruneh 左旋走滑 EW弧形 400 − 5.3±1.7 − 13世纪以来无强震资料 F15 巴亚兹断裂 Dasht-e Bayaz 左旋走滑 EW 120 4~5 >2.5 − 1968年8月31日MW7.1(80);
1979年11月27日MW7.1(68)F16 阿比兹断裂 Abiz 右旋走滑 NNW 125 − − − 1936年6月30日MW6.0;1979年
11月14日MW6.6(20);1997年5月
10日MW7.2(125)F17 扎黑丹断裂 Zahedan 右旋走滑 N-S 150 13~20 − − 断裂北端逆断裂1994年
2月23日MW6.2F18 内赫东断裂 EastNeh 右旋走滑 N-S 200 50 N 1.75~2.5;S 1.0~2.5 − 无强震资料 F19 内赫西断裂 WestNeh 右旋走滑 N-S 200 10 1.0~5.0 − 无强震资料 F20 奈班德断裂 Nayband 右旋走滑 N-S 290 2~4 1.8±0.7 − 6.5 ka*,6.7 ka*,<0.74 ka*;断裂以北塔巴斯1978年9月16日MW7.3 F21 高克断裂 Gowk 右旋走滑 NNW >150 12~15 3.8~5.7 − 1981年6月11日MW6.6(15);
1981年7月28日MW7.0(65);
1998年3月14日MW6.6(23)F22 萨卜扎瓦兰断裂带 Sabzevran-Jiroft 右旋逆断 N-S 150 − 5.7±1.7 − 无强震资料 F23 代赫希尔断裂 Dehshir 右旋走滑 NNW 400 65±15 1.2±0.3 − 2.8±1.4 ka,~2.0±0.2 ka*,
6000年复发周期F24 阿纳尔断裂 Anar 右旋走滑 NNW 200 25±5 >0.8±0.1 − 9.8±2.0,6.8±1.0,4.4±0.8 ka*,2000~5000年复发周期 F25 拉夫桑詹断裂 Rafsanjan 右旋走滑 NW 200 − 0.4 − 无强震资料 F26 库赫博南断裂 Kuh Banan 右旋走滑 NNW 180 5~7 1.0~2.0 − 1933年11月28日MW6.2;1977年
12月19日MW5.9 (19.5)F27 大不里士北断裂 North Tabriz 右旋走滑 NW >120 20~25 NW 6.5~7.3 − SE 1721年4月26日M7.3(>35);NW 1780年1月8日M7.4(>42) F28 阿哈尔断裂 Ahar 右旋走滑 EW >150 − 1.9±0.1 − 2012年8月11日MW6.4,6.2(13) F29 萨勒马斯断裂 Salmas 右旋走滑 NW-NNW 60 − − − 1930年5月6日MW7.1(16~30) F30 马拉盖断裂 Maragheh 右旋走滑 NW-NNW >110 − − − 无强震资料 F31 古昌断裂 Quchan 右旋走滑 NNW >130 15.5 4.3±0.6 − 古昌区域1851,1871,1893,1895年M~7.0 F32 巴甘断裂 Baghan 右旋走滑 NNW 80 9.8 2.8±1.0 − 1929年5月1日MW7.2(74) F33 内沙布尔断裂带 Neyshabur 右旋逆断 NW 90 f 2.4±0.5 2.8±0.6 内沙布尔区域1209,1270,
1389,1405年M>7.0F34 马什哈德断裂 Mashahad 右旋走滑 NW 125 − 1.3±0.1 − 1673年7月30日M6.6 F35 米纳卜断裂带 Minab-Zendan 右旋逆断 N-NNW 250 − 4.7±2.0
(6.3±2.3)− 无强震资料 注:1.断裂中文名称主要依据中国地图出版社发行的世界分国地图册,个别名称参照已有地名翻译,中文名称只保留首个地名;英文名称为波斯语拉丁转写的简化,并省略了断裂(带)对应的英文fault(zone)。累积位错主要为水平位错,仅塔莱甘断裂为垂直位错。各断裂研究资料见正文。
2.滑动速率一栏,数值前的英文字母表示断裂的不同段落,如N表示北段,M表示中段,断裂带的滑动速率为分支断裂的累加速率。
3.地震活动一栏,日期前的字母表示断裂段落,震级之后括号内数字为同震地表破裂带的长度,单位为km,同震地表破裂资料来自Ghassemi(2016);问号(?)表示存在争议或证据不充分,星号(*)表示探槽古地震事件;无强震资料指无6.0级以上地震记录或记载;“区域”指这一地区记载的地震事件,发震构造可能涉及多条活动断裂。
4.历史地震资料主要依据Berberian(2014),通常为里氏震级,需要特别注意伊朗历史地震的震级采用小数表示。 -
陈学忠, 许建东, 2004.2003年12月26日伊朗巴姆地震. 国际地震动态, (2): 21—23 doi: 10.3969/j.issn.0253-4975.2004.02.006Chen X. Z. , Xu J. D. , 2004. An earthquake occurred in bam of Iran on December 26, 2003. Recent Developments in World Seismology, (2): 21—23. (in Chinese) doi: 10.3969/j.issn.0253-4975.2004.02.006 代欢欢, 陈俊华, 方尹, 2017.1986年~2016年伊朗人口空间分布格局演变特征. 世界地理研究, 26(3): 29—38 doi: 10.3969/j.issn.1004-9479.2017.03.004Dai H. H. , Chen J. H. , Fang Y. , 2017. Evolution of spatial pattern of province-level population distribution in Iran during 1986-2016. World Regional Studies, 26(3): 29—38. (in Chinese) doi: 10.3969/j.issn.1004-9479.2017.03.004 邓起东, 张裕明, 许桂林等, 1979. 中国构造应力场特征及其与板块运动的关系. 地震地质, 1(1): 11—22Deng Q. D. , Zhang Y. M. , Xu G. L. , et al. , 1979. On the tectonic stress field in China and its relation to plate movement. Seismology and Geology, 1(1): 11—22. (in Chinese) 邓起东, 卢造勋, 杨主恩, 2007. 城市活动断层探测和断层活动性评价问题. 地震地质, 29(2): 189—200 doi: 10.3969/j.issn.0253-4967.2007.02.001Deng Q. D. , Lu Z. X. , Yang Z. E. , 2007. Remarks on urban active faults exploration and associated activity assessment. Seismology and Geology, 29(2): 189—200. (in Chinese) doi: 10.3969/j.issn.0253-4967.2007.02.001 邓起东, 闻学泽, 2008. 活动构造研究——历史、进展与建议. 地震地质, 30(1): 1—30 doi: 10.3969/j.issn.0253-4967.2008.01.002Deng Q. D. , Wen X. Z. , 2008. A review on the research of active tectonics——history, progress and suggestions. Seismology and Geology, 30(1): 1—30. (in Chinese) doi: 10.3969/j.issn.0253-4967.2008.01.002 刘小兵, 温志新, 贺正军等, 2019. 中东扎格罗斯盆地: 沿走向变化的构造及油气特征. 岩石学报, 35(4): 1269—1278 doi: 10.18654/1000-0569/2019.04.19Liu X. B. , Wen Z. X. , He Z. J. , et al. , 2019. Zagros basin in Middle East: along-strike variations of structure and petroleum accumulation characteristics. Acta Petrologica Sinica, 35(4): 1269—1278. (in Chinese) doi: 10.18654/1000-0569/2019.04.19 王剑, 赵汝敏, 谢楠等, 2016. 扎格罗斯前陆盆地构造样式与油气成藏规律. 海洋地质与第四纪地质, 36(2): 143—151 doi: 10.16562/j.cnki.0256-1492.2016.02.016Wang J. , Zhao R. M. , Xie N. , et al. , 2016. Structural style of Zagros foreland basin and its bearing on oil and gas accumulation. Marine Geology & Quaternary Geology, 36(2): 143—151. (in Chinese) doi: 10.16562/j.cnki.0256-1492.2016.02.016 王卫民, 郝金来, 何建坤等, 2018.2013年巴基斯坦俾路支MW7.7地震震源过程研究. 地球物理学报, 61(3): 872—879 doi: 10.6038/cjg2018L0769Wang W. M. , Hao J. L. , He J. K. , et al. , 2018. Rupture process of the 2013, Balochistan MW7.7 earthquake, Pakistan. Chinese Journal of Geophysics, 61(3): 872—879. (in Chinese) doi: 10.6038/cjg2018L0769 文鑫涛, 李华玥, 段乙好等, 2021.2020年中国大陆地震灾害损失述评. 震灾防御技术, 16(4): 651—656 doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104006Wen X. T. , Li H. Y. , Duan Y. H. , et al. , 2021. Earthquake disasters loss on Chinese mainland in 2020. Technology for Earthquake Disaster Prevention, 16(4): 651—656. (in Chinese) doi: 10.11899/j.issn.1673-5722.2021.4.zzfyjs202104006 徐锡伟, 2006. 活动断层、地震灾害与减灾对策问题. 震灾防御技术, 1(1): 7—14 doi: 10.3969/j.issn.1673-5722.2006.01.002Xu X. W. , 2006. Active faults, associated earthquake disaster distribution and policy for disaster reduction. Technology for Earthquake Disaster Prevention, 1(1): 7—14. (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.01.002 张洪瑞, 侯增谦, 2018. 大陆碰撞带成矿作用: 年轻碰撞造山带对比研究. 中国科学: 地球科学, 48(12): 1629—1654.Zhang H. R. , Hou Z. Q. , 2018. Metallogenesis within continental collision zones: comparisons of modern collisional orogens. Science China Earth Sciences, 61(12): 1737—1760. 张培震, 张会平, 郑文俊等, 2014. 东亚大陆新生代构造演化. 地震地质, 36(3): 574—585 doi: 10.3969/j.issn.0253-4967.2014.03.003Zhang P. Z. , Zhang H. P. , Zheng W. J. , et al. , 2014. Cenozoic tectonic evolution of continental eastern Asia. Seismology and Geology, 36(3): 574—585. (in Chinese) doi: 10.3969/j.issn.0253-4967.2014.03.003 张裕明, 汪良谋, 董瑞树等, 1981. 亚欧地震构造图说明书. 北京: 地图出版社, 1—33Zhang Y. M., Wang L. M., Dong R. S., et al., 1981. The instruction for seismotectonic map of Asia and Europe. Beijing: Cartographic Publishing House, 1—33. (in Chinese) 郑剑东, 1990. 伊朗地震考察简况. 地震地质, 12(4): 380—381Zheng J. D. , 1990. Brief investigation on the 1990 earthquake in Iran. Seismology and Geology, 12(4): 380—381. (in Chinese) Alipoor R., Zaré M., Ghassemi M. R., 2012. Inception of activity and slip rate on the Main Recent Fault of Zagros Mountains, Iran. Geomorphology, 175—176: 86—97. Allen M. B. , Ghassemi M. R. , Shahrabi M. , et al. , 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology, 25(5): 659—672. doi: 10.1016/S0191-8141(02)00064-0 Allen M. B., 2010. Roles of strike-slip faults during continental deformation: examples from the active Arabia–Eurasia collision. In: Kusky T. M., Zhai M. G., Xiao W., eds., The Evolving Continents: Understanding Processes of Continental Growth. London: The Geological Society, 338: 329—344. Allen M. B. , Kheirkhah M. , Emami M. H. , et al. , 2011. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone. Geophysical Journal International, 184(2): 555—574. doi: 10.1111/j.1365-246X.2010.04874.x Ambraseys N. N., Melville C. P., 1982. A history of Persian earthquakes. Cambridge: Cambridge University Press, 1—219. Authemayou C. , Chardon D. , Bellier O. , et al. , 2006. Late Cenozoic partitioning of oblique plate convergence in the Zagros fold-and-thrust belt (Iran). Tectonics, 25(3): TC3002. Authemayou C. , Bellier O. , Chardon D. , et al. , 2009. Quaternary slip-rates of the Kazerun and the Main Recent Faults: active strike-slip partitioning in the Zagros fold-and-thrust belt. Geophysical Journal International, 178(1): 524—540. doi: 10.1111/j.1365-246X.2009.04191.x Barnhart W. D. , Hayes G. P. , Samsonov S. V. , et al. , 2014. Breaking the oceanic lithosphere of a subducting slab: the 2013 Khash, Iran earthquake. Geophysical Research Letters, 41(1): 32—36. doi: 10.1002/2013GL058096 Berberian M., 1981. Active faulting and tectonics of Iran. In: Gupta H. K., Delany F. M., eds., Zagros Hindu Kush Himalaya Geodynamic Evolution. Washington D. C. USA: American Geophysical Union, 33—69. Berberian M., 1995. Master “blind” thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics. Tectonophysics, 241(3—4): 193—195, 197, 199—224. Berberian M. , Walker R. , 2010. The Rudbār MW 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’, Iran. Geophysical Journal International, 182(3): 1577—1602. doi: 10.1111/j.1365-246X.2010.04705.x Berberian M., 2014. Earthquakes and coseismic surface faulting on the Iranian plateau: a historical, social, and physical approach. Amsterdam: Elsevier, 1—714. Berberian M., Yeats R. S., 2017. Tehran: an earthquake time bomb. In: Sorkhabi R., ed., Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions. Boulder: The Geological Society of America, 87—170. Byrne D. E. , Sykes L. R. , Davis D. M. , 1992. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone. Journal of Geophysical Research, 97(B1): 449—478. doi: 10.1029/91JB02165 Copley A. , Faridi M. , Ghorashi M. , et al. , 2014. The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish–Iranian Plateau. Geophysical Journal International, 196(1): 15—21. doi: 10.1093/gji/ggt379 Danciu L. , Şeşetyan K. , Demircioglu M. , et al. , 2018. The 2014 earthquake model of the Middle East: seismogenic sources. Bulletin of Earthquake Engineering, 16(8): 3465—3496. doi: 10.1007/s10518-017-0096-8 Farbod Y. , Shabanian E. , Bellier O. , et al. , 2016. Spatial variations in late Quaternary slip rates along the Doruneh Fault System (Central Iran). Tectonics, 35(2): 386—406. doi: 10.1002/2015TC003862 Faridi M. , Nazari H. , Burg J. P. , et al. , 2019. Structural characteristics, paleoseismology and slip rate of the Qoshadagh fault, northwest of Iran. Geotectonics, 53(2): 280—297. doi: 10.1134/S0016852119020031 Fattahi M. , Walker R. T. , Talebian M. , et al. , 2014. Late Quaternary active faulting and landscape evolution in relation to the Gowk Fault in the South Golbaf Basin, S. E. Iran. Geomorphology, 204: 334—343. doi: 10.1016/j.geomorph.2013.08.017 Fattahi M. , Walker R. , Khatib M. M. , et al. , 2015. Determination of slip-rate by optical dating of lake bed sediments from the Dasht-E-Bayaz fault, NE Iran. Geochronometria, 42(1): 148—157. Foroutan M. , Meyer B. , Sébrier M. , et al. , 2014. Late Pleistocene-Holocene right slip rate and paleoseismology of the Nayband fault, western margin of the Lut block, Iran. Journal of Geophysical Research: Solid Earth, 119(4): 3517—3560. doi: 10.1002/2013JB010746 Ghassemi M. R. , 2016. Surface ruptures of the Iranian earthquakes 1900–2014: insights for earthquake fault rupture hazards and empirical relationships. Earth-Science Reviews, 156: 1—13. doi: 10.1016/j.earscirev.2016.03.001 Ghods A. , Shabanian E. , Bergman E. , et al. , 2015. The Varzaghan–Ahar, Iran, Earthquake Doublet (MW 6.4, 6.2): implications for the geodynamics of northwest Iran. Geophysical Journal International, 203(1): 522—540. doi: 10.1093/gji/ggv306 Ghorbani M., 2013. The economic geology of Iran: mineral deposits and natural resources. Dordrecht: Springer, 1—572. Hatzfeld D. , Molnar P. , 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Reviews of Geophysics, 48(2): RG2005. Hessami K. , Pantosti D. , Tabassi H. , et al. , 2003. Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Annals of Geophysics, 46(5): 903—915. Hessami K. , Jamali F. , 2006. Explanatory notes to the map of major active faults of Iran. Journal of Seismology and Earthquake Engineering, 8(1): 1—11. Hoffmann G. , Grützner C. , Schneider B. , et al. , 2020. Large Holocene tsunamis in the northern Arabian Sea. Marine Geology, 419: 106068. doi: 10.1016/j.margeo.2019.106068 Hollingsworth J. , Jackson J. , Walker R. , et al. , 2006. Strike-slip faulting, rotation, and along-strike elongation in the Kopeh Dagh mountains, NE Iran. Geophysical Journal International, 166(3): 1161—1177. doi: 10.1111/j.1365-246X.2006.02983.x Hollingsworth J. , Jackson J. , Walker R. , et al. , 2008. Extrusion tectonics and subduction in the eastern South Caspian region since 10 Ma. Geology, 36(10): 763—766. doi: 10.1130/G25008A.1 Hollingsworth J. , Nazari H. , Ritz J. F. , et al. , 2010. Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left-lateral Astaneh fault system during the great 856 A. D. Qumis earthquake. Journal of Geophysical Research, 115(B12): B12313. doi: 10.1029/2009JB007185 Jackson J. , Priestley K. , Allen M. , et al. , 2002. Active tectonics of the South Caspian Basin. Geophysical Journal International, 148(2): 214—245. Javidfakhr B., Bellier O., Shabanian E., et al., 2011. Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): geodynamic implications for NNE Iran. Journal of Geodynamics, 52(3—4): 290—303. Karasözen E. , Nissen E. , Bergman E A. , et al. , 2019. Seismotectonics of the Zagros (Iran) from orogen-wide, calibrated earthquake relocations. Journal of Geophysical Research: Solid Earth, 124(8): 9109—9129. doi: 10.1029/2019JB017336 Kopp C., Fruehn J., Flueh E. R., et al., 2000. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329(1—4): 171—191. Landgraf A. , Ballato P. , Strecker M. R. , et al. , 2009. Fault-kinematic and geomorphic observations along the North Tehran Thrust and Mosha Fasham Fault, Alborz mountains Iran: implications for fault-system evolution and interaction in a changing tectonic regime. Geophysical Journal International, 177(2): 676—690. doi: 10.1111/j.1365-246X.2009.04089.x Meyer B. , Le Dortz K. , 2007. Strike-slip kinematics in Central and Eastern Iran: estimating fault slip-rates averaged over the Holocene. Tectonics, 26(5): TC5009. Mirzaei N., Gheitanchi M. R., Naserieh S., et al., 2002. Basic parameters of earthquakes in Iran. Tehran: Daneshnegar Publications, 1—183. Mouthereau F., Lacombe O., Vergés J., 2012. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532—535: 27—60. Nazari H. , Ritz J. F. , Salamati R. , et al. , 2009. Morphological and palaeoseismological analysis along the Taleghan fault (Central Alborz, Iran). Geophysical Journal International, 178(2): 1028—1041. doi: 10.1111/j.1365-246X.2009.04173.x Nazari H. , Ritz J. F. , Walker R. T. , et al. , 2014. Palaeoseismic evidence for a medieval earthquake, and preliminary estimate of late Pleistocene slip-rate, on the Firouzkuh strike-slip fault in the Central Alborz region of Iran. Journal of Asian Earth Sciences, 82: 124—135. doi: 10.1016/j.jseaes.2013.12.018 Nazari H. , Ritz J. F. , Burg J. P. , et al. , 2021. Active tectonics along the Khazar fault (Alborz, Iran). Journal of Asian Earth Sciences, 219: 104893. doi: 10.1016/j.jseaes.2021.104893 Nissen E. , Tatar M. , Jackson J. A. , et al. , 2011. New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophysical Journal International, 186(3): 928—944. doi: 10.1111/j.1365-246X.2011.05119.x Nissen E. , Ghods A. , Karasözen E. , et al. , 2019. The 12 November 2017 MW 7.3 Ezgeleh-Sarpolzahab (Iran) earthquake and active tectonics of the Lurestan Arc. Journal of Geophysical Research: Solid Earth, 124(2): 2124—2152. doi: 10.1029/2018JB016221 Page W. D., Alt J. N., Cluff L. S., et al., 1979. Evidence for the recurrence of large-magnitude earthquakes along the Makran Coast of Iran and Pakistan. Tectonophysics, 52(1—4): 533—547. Penney C. , Tavakoli F. , Saadat A. , et al. , 2017. Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. Geophysical Journal International, 209(3): 1800—1830. doi: 10.1093/gji/ggx126 Rashidi A. , Dutykh D. , Shomali Z. H. , et al. , 2020. A review of tsunami hazards in the Makran Subduction Zone. Geosciences, 10(9): 372. doi: 10.3390/geosciences10090372 Regard V. , Bellier O. , Thomas J. C. , et al. , 2005. Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran. Geophysical Journal International, 162(1): 177—203. doi: 10.1111/j.1365-246X.2005.02558.x Ritz J. F. , Nazari H. , Ghassemi A. , et al. , 2006. Active transtension inside central Alborz: a new insight into northern Iran–southern Caspian geodynamics. Geology, 34(6): 477—480. doi: 10.1130/G22319.1 Rizza M. , Vernant P. , Ritz J. F. , et al. , 2013. Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz fault (Iran). Geophysical Journal International, 193(3): 1083—1094. doi: 10.1093/gji/ggt041 Şeşetyan K. , Danciu L. , Demircioğlu Tümsa M. B. , et al. , 2018. The 2014 seismic hazard model of the Middle East: overview and results. Bulletin of Earthquake Engineering, 16(8): 3535—3566. doi: 10.1007/s10518-018-0346-4 Shabanian E. , Siame L. , Bellier O. , et al. , 2009. Quaternary slip rates along the northeastern boundary of the Arabia-Eurasia collision zone (Kopeh Dagh Mountains, Northeast Iran). Geophysical Journal International, 178(2): 1055—1077. doi: 10.1111/j.1365-246X.2009.04183.x Shabanian E. , Bellier O. , Siame L. , et al. , 2012. The Binalud Mountains: a key piece for the geodynamic puzzle of NE Iran. Tectonics, 31(6): TC6003. Solaymani Azad S., Ritz J. F., Abbassi M. R., 2011. Left-lateral active deformation along the Mosha–North Tehran fault system (Iran): morphotectonics and paleoseismological investigations. Tectonophysics, 497(1—4): 1—14. Stern R. J. , Moghadam H. S. , Pirouz M. , et al. , 2021. The geodynamic evolution of Iran. Annual Review of Earth and Planetary Sciences, 49: 9—36. doi: 10.1146/annurev-earth-071620-052109 Stöcklin J. , 1968. Structural history and tectonics of Iran: a review. AAPG Bulletin, 52(7): 1229—1258. Taghipour K., Khatib M. M., Heyhat M., et al., 2018. Evidence for distributed active strike-slip faulting in NW Iran: the Maragheh and Salmas fault zones. Tectonophysics, 742—743: 15—33. Talebian M. , Jackson J. , 2002. Offset on the Main Recent Fault of NW Iran and implications for the Late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophysical Journal International, 150(2): 422—439. doi: 10.1046/j.1365-246X.2002.01711.x Talebian M. , Jackson J. , 2004. A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3): 506—526. doi: 10.1111/j.1365-246X.2004.02092.x Tatar M. , Jackson J. , Hatzfeld D. , et al. , 2007. The 2004 May 28 Baladeh earthquake (MW 6.2) in the Alborz, Iran: overthrusting the South Caspian Basin margin, partitioning of oblique convergence and the seismic hazard of Tehran. Geophysical Journal International, 170(1): 249—261. doi: 10.1111/j.1365-246X.2007.03386.x Vernant P. , Nilforoushan F. , Hatzfeld D. , et al. , 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1): 381—398. doi: 10.1111/j.1365-246X.2004.02222.x Walker R. , Jackson J. , 2004 a. Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics, 23(5): TC5010. Walker R. , Jackson J. , Baker C. , 2004 b. Active faulting and seismicity of the Dasht-e-Bayaz region, eastern Iran. Geophysical Journal International, 157(1): 265—282. doi: 10.1111/j.1365-2966.2004.02179.x -