• ISSN 1673-5722
  • CN 11-5429/P

2023年土耳其双震静态应力触发研究

张小娟 盛书中 葛坤朋 胡捷

张小娟,盛书中,葛坤朋,胡捷,2023. 2023年土耳其双震静态应力触发研究. 震灾防御技术,18(3):505−517. doi:10.11899/zzfy20230308. doi: 10.11899/zzfy20230308
引用本文: 张小娟,盛书中,葛坤朋,胡捷,2023. 2023年土耳其双震静态应力触发研究. 震灾防御技术,18(3):505−517. doi:10.11899/zzfy20230308. doi: 10.11899/zzfy20230308
Zhang Xiaojuan, Sheng Shuzhong, Ge Kunpeng, Hu Jie. Study on the Static Stress Triggering Effect of the 2023 Turkey Doublet Earthquakes[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 505-517. doi: 10.11899/zzfy20230308
Citation: Zhang Xiaojuan, Sheng Shuzhong, Ge Kunpeng, Hu Jie. Study on the Static Stress Triggering Effect of the 2023 Turkey Doublet Earthquakes[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 505-517. doi: 10.11899/zzfy20230308

2023年土耳其双震静态应力触发研究

doi: 10.11899/zzfy20230308
基金项目: 国家自然科学基金项目(42174074、41704053);江西省科技计划项目(20212BCJ23002、20232ACB213013);东华理工大学博士科研启动基金(DHBK2019084)
详细信息
    作者简介:

    张小娟,女,生于1984年。硕士研究生。主要从事发震构造和应力触发等方面研究工作。E-mail:zhangxiaojuangd@qq.com

    通讯作者:

    盛书中,男,生于1982年。教授。主要从事构造应力场、应力触发等方面研究工作。E-mail:ssz@cea-igp.ac.cn

  • 12 震情简介参考https://www.scieau.com/articles/2023028636
  • 23 https://earthquake.usgs.gov/earthquakes/browse/significant.php?year=2023
  • 34 http://www.koeri.boun.edu.tr/sismo/2/latest-earthquakes/automatic-solutions/

Study on the Static Stress Triggering Effect of the 2023 Turkey Doublet Earthquakes

  • 摘要: 为了研究2023年土耳其双震间是否存在应力触发作用以及双震对周边断裂和余震的影响,本文基于USGS给出的双震破裂模型、全球震源机制解(GCMT)目录和土耳其海峡大学坎迪利天文台与地震研究所区域地震海啸监测中心实时地震资料,利用Coulomb 3.3软件从静态应力触发角度对土耳其双震序列进行了研究。研究结果表明:第1次主震在第2次主震震源处产生的库仑应力量值为0.033 MPa,超过应力触发阈值0.01 MPa,反映出第2次主震的发生受到第1次主震的触发作用。两次主震在第1次主震所在的东安纳托利亚断裂破裂段的东北部和西南部有应力加载作用,且加载的库仑应力量值较大;在7.8级地震破裂段上的作用为应力卸载,即发震段应力得到释放。两次主震在第2次主震所在的卡达克断裂的破裂段1和3交汇部位产生了应力卸载作用。余震库仑应力计算结果表明2次主震对余震存在明显的触发作用。上述研究结果可以为后续地震危险性分析等相关研究提供参考。
    1)  12 震情简介参考https://www.scieau.com/articles/2023028636
    2)  23 https://earthquake.usgs.gov/earthquakes/browse/significant.php?year=2023
    3)  34 http://www.koeri.boun.edu.tr/sismo/2/latest-earthquakes/automatic-solutions/
  • 图  1  研究区地质构造与地震分布图

    Figure  1.  Geological structure and earthquake distribution of the study area

    图  2  M7.8地震在M7.5地震破裂面上产生的库仑应力分布

    Figure  2.  The Coulomb stress change distribution on the rupture plane of the M7.5 earthquake caused by the M7.8 mainshock

    图  3  第1次主震在周边断裂上产生的库仑应力变化图

    Figure  3.  The coulomb stress change on the surrounding active faults caused by the first mainshock

    图  4  双震在周边断裂上产生的库仑应力变化图

    Figure  4.  The coulomb stress change on the surrounding active faults caused by the doublet earthquakes

    图  5  双震产生的库仑应力及余震分布图

    Figure  5.  The distribution of aftershocks and coulomb stress caused by the doublet earthquakes

    表  1  震源机制解参数表

    Table  1.   The parameter table of focal mechanisms

    序号发震时间/
    年-月-日
    纬度/(°)经度/(°)震级MW深度/km节面1节面2
    走向/(°)倾角/(°)滑动角/(°)走向/(°)倾角/(°)滑动角/(°)
    11979-12-2837.4735.855.441.023190014190180
    21986-05-0537.9737.776.010.026054916482144
    31986-06-0637.9737.885.810.025090016090180
    41989-06-2436.7035.885.141.02762−8820328−93
    51991-04-1037.2136.015.333.02972−7016027−136
    61997-01-2236.2535.955.710.024339−1534581−128
    71998-05-0938.2838.995.110.025183−734183−173
    81998-06-2736.8835.316.35.853811532175171
    91998-07-0436.87735.325.433.07255833884145
    102001-06-2537.2436.215.45.0175−9218915−83
    112003-07-1338.2938.965.510.07289134289179
    122005-11-2638.2638.815.18.523751−2033975−139
    132006-03-2935.2535.435.027.321943−1031783−132
    142008-09-0337.5138.505.05.721979−1031180−169
    152008-11-1238.8435.525.110.022770−1332178−160
    162010-11-1436.5836.014.92.52453−9421137−84
    172012-07-2237.5536.384.87.63853−7819838−106
    182012-09-1937.3137.105.07.021048−1130782−138
    192014-02-1436.7436.084.910.03570−5915536−144
    202014-06-0936.7436.054.817.63465−6316436−135
    212015-11-2938.8237.745.110.033872161747219
    222017-03-0237.6238.435.610.022578−2131969−167
    232018-04-2437.6038.515.210.021263−330487−153
    242018-10-0237.6737.404.75.024290−4233248−180
    252019-03-2538.6938.074.910.034364−15724270−28
    262020-02-2538.3438.805.010.023240−2934572−127
    272020-04-0335.9435.494.812.734550−11720447−61
    282020-04-1535.8635.534.910.021947−1031683−137
    292020-06-0538.2438.765.110.023449−2434072−137
    302020-08-0438.1938.705.610.023575−1532976−165
    312020-09-0838.0638.784.810.023863−733283−153
    322021-11-1238.2038.785.07.023782−2533065−171
    332022-04-0938.1138.675.310.024883−1434077−173
    342022-10-1137.2636.235.010.01752−8018139−103
    352023-02-0637.1737.037.817.954701132080160
    362023-02-0637.1336.946.814.521166−1330678−156
    372023-02-0638.0237.207.710.026142−835884−132
    382023-02-0737.7637.745.510.0204541010880144
    392023-02-0837.9537.655.57.5206741772978716
    402023-02-2036.1136.026.316.022745−1632979−134
    下载: 导出CSV
  • 程佳, 徐锡伟, 2018. 巴颜喀拉块体周缘强震间应力作用与丛集活动特征初步分析. 地震地质, 40(1): 133—154 doi: 10.3969/j.issn.0253-4967.2018.01.011

    Cheng J. , Xu X. W. , 2018. Features of earthquake clustering from calculation of Coulomb stress around the Bayan Har Block, Tibetan Plateau. Seismology and Geology, 40(1): 133—154. (in Chinese) doi: 10.3969/j.issn.0253-4967.2018.01.011
    郝平, 傅征祥, 田勤俭等, 2004. 昆仑山口西8.1级地震强余震库仑破裂应力触发研究. 地震学报, 26(1): 30—37

    Hao P. , Fu Z. X. , Tian Q. J. , et al. , 2004. Large aftershocks triggering by Coulomb failure stress following the 2001 MS=8.1 great Kunlun earthquake. Acta Seismologica Sinica, 26(1): 30—37. (in Chinese)
    何金, 许鑫, 吴彪等, 2022. 汶川地区区域构造应力场特征及汶川MS8.0地震对周围主要断层面的影响. 地震科学进展, 52(3): 97—115

    He J. , Xu X. , Wu B. , et al. , 2022. Characteristics of regional tectonic stress field in Wenchuan area and the effect of Wenchuan MS8.0 earthquake on surrounding major fault surfaces. Progress in Earthquake Sciences, 52(3): 97—115. (in Chinese)
    贾若, 蒋海昆, 2014. 基于同震库仑应力变化的汶川地震余震频次研究. 中国地震, 30(1): 74—90

    Jia R. , Jiang H. K. , 2014. Aftershock sequence frequency research on the Wenchuan aftershock sequence based on the coseismic Coulomb stress changes. Earthquake Research in China, 30(1): 74—90. (in Chinese)
    靳志同, 崔华伟, 刘佳璐等, 2023.2023年土耳其两次强震对周围地区的静态应力影响. 防灾科技学院学报, 25(2): 1—12

    Jin Z. T. , Cui H. W. , Liu J. L. , et al. , 2023. Impact of two strong earthquakes in Turkey in 2023 on the static stress in the surrounding areas of the epicenters. Journal of Institute of Disaster Prevention, 25(2): 1—12. (in Chinese)
    李健, 詹文欢, 朱俊江等, 2016. 南海东部俯冲洋脊区段地震静态库伦应力分析. 海洋地质与第四纪地质, 36(5): 63—73

    Li J. , Zhan W. H. , Zhu J. J. , et al. , 2016. Static Coulomb stress analysis for earthquakes in the spreading ridge of the South China Sea. Marine Geology & Quaternary Geology, 36(5): 63—73. (in Chinese)
    李健, 詹文欢, 朱俊江等, 2017.1990年菲律宾Mw7.7级强震对马尼拉俯冲带静态应力触发影响. 海洋地质与第四纪地质, 37(6): 93—99

    Li J. , Zhan W. H. , Zhu J. J. , et al. , 2017. A preliminary study on static stress triggering effects on Manila subduction zone by the Philippine Mw7.7 earthquake 1990. Marine Geology & Quaternary Geology, 37(6): 93—99. (in Chinese)
    李玉江, 石富强, 张辉等, 2020. 川滇地区主要断裂带上的库仑应力变化及其对地震危险性的指示. 地震地质, 42(2): 526—546

    Li Y. J. , Shi F. Q. , Zhang H. , et al. , 2020. Coulomb stress change on active faults in Sichuan-Yunnan region and its implications for seismic hazard. Seismology and Geology, 42(2): 526—546. (in Chinese)
    刘盼, 李平恩, 廖力, 2017. 从库仑破裂应力和余震分布角度探讨汶川地震和芦山地震的关系. 震灾防御技术, 12(1): 40—55

    Liu P. , Li P. E. , Liao L. , 2017. Discussion of relationship between the Wenchuan earthquake and Lushan earthquake from the viewpoint of Coulomb failure stress change and spatial distribution of aftershocks. Technology for Earthquake Disaster Prevention, 12(1): 40—55. (in Chinese)
    刘强, 倪四道, 秦嘉政等, 2007.2007年宁洱6.4级地震强余震库仑破裂应力触发研究. 地震研究, 30(4): 331—336

    Liu Q. , Ni S. D. , Qin J. Z. , et al. , 2007. Triggered strong aftershock by Coulomb failure stress change caused by the 2007 Ning'er, Yunnan, MS6.4 earthquake. Journal of Seismological Research, 30(4): 331—336. (in Chinese)
    Seismology小组, 2023. 2023年2月6日土耳其双强震的震源机制中心解、地震触发关系及产生的地表变形. (2023-02-08)[2023-07-06]. https://mp.weixin.qq.com/s/Au_fjta-kqAuHmwkp4LUw.

    Seismology Group, 2023. The center focal mechanism solution of the 2023 Türkiye Doublet Earthquakes on February 6, 2023, and their static stress triggering relationship and surface deformation. (2023-02-08)[2023-07-06].https://mp.weixin.qq.com/s/Au_fjta-kqAuHmwkp4LUw. (in Chinese)
    盛书中, 万永革, 程佳等, 2012.2011年日本9.0级大地震的应力触发作用初步研究. 地震地质, 34(2): 325—337

    Sheng S. Z. , Wan Y. G. , Cheng J. , et al. , 2012. Primary research on the Coulomb stress triggering of the 2011 Mw 9.0 Tohoku earthquake. Seismology and Geology, 34(2): 325—337. (in Chinese)
    盛书中, 万永革, 蒋长胜等, 2015.2015年尼泊尔MS8.1强震对中国大陆静态应力触发影响的初探. 地球物理学报, 58(5): 1834—1842

    Sheng S. Z. , Wan Y. G. , Jiang C. S. , et al. , 2015. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal MS8.1 earthquake. Chinese Journal of Geophysics, 58(5): 1834—1842. (in Chinese)
    盛书中, 万永革, 徐锡伟等, 2019. 用大量地震震源机制解检验2008年汶川地震对后续地震的触发作用[J]. 地球物理学报, 62(12): 4588—4603 doi: 10.6038/cjg2019M0198

    Sheng S. Z. , Wan Y. G. , Xu X. W. , et al. , 2019. Using a large number of focal mechanism solutions to examine the Coulomb stress triggering effect of the 2008 Wenchuan earthquake on its subsequent earthquakes. Chinese Journal of Geophysics, 62(12): 4588—4603. (in Chinese) doi: 10.6038/cjg2019M0198
    石富强, 张辉, 邵志刚等, 2020. 华北地区库仑应力演化与强震活动关系. 地球物理学报, 63(9): 3338—3354

    Shi F. Q. , Zhang H. , Shao Z. G. , et al. , 2020. Coulomb stress evolution and stress interaction among strong earthquakes in North China. Chinese Journal of Geophysics, 63(9): 3338—3354. (in Chinese)
    宋金, 周龙泉, 2014.2014年于田MS7.3地震产生的静态库仑应力变化及对周边断层的影响. 中国地震, 30(2): 168—177

    Song J. , Zhou L. Q. , 2014. The static stress triggering effects related with the Yutian MS7.3 earthquake. Earthquake Research in China, 30(2): 168—177. (in Chinese)
    万永革, 吴忠良, 周公威等, 2000. 几次复杂地震中不同破裂事件之间的“应力触发”问题. 地震学报, 22(6): 568—576

    Wan Y. G. , Wu Z. L. , Zhou G. W. , et al. , 2000. "Stress triggering" between different rupture events in several earthquakes. Acta Seismologica Sinica, 22(6): 568—576. (in Chinese)
    汪建军, 许才军, 2017.2017年Mw6.5九寨沟地震激发的同震库仑应力变化及其对周边断层的影响. 地球物理学报, 60(11): 4398—4420

    Wang J. J. , Xu C. J. , 2017. Coseismic Coulomb stress changes associated with the 2017 Mw6.5 Jiuzhaigou earthquake (China) and its impacts on surrounding major faults. Chinese Journal of Geophysics, 60(11): 4398—4420. (in Chinese)
    解朝娣, 王英楠, 闫如玉等, 2021.2014年四川康定MS6.3和MS5.8地震的应力触发研究. 地震研究, 44(1): 9—14

    Xie C. D. , Wang Y. N. , Yan R. Y. , et al. , 2021. Study on stress triggering of 2014 Kangding MS6.3 and MS5.8 earthquakes. Journal of Seismological Research, 44(1): 9—14. (in Chinese)
    熊维, 谭凯, 刘刚等, 2015.2015年尼泊尔Mw7.9地震对青藏高原活动断裂同震、震后应力影响. 地球物理学报, 58(11): 4305—4316

    Xiong W. , Tan K. , Liu G. , et al. , 2015. Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal Mw7.9 earthquake. Chinese Journal of Geophysics, 58(11): 4305—4316. (in Chinese)
    尹迪, 董培育, 石耀霖, 2022. 紫坪铺库区小震产生的库仑应力变化及其与汶川地震的关系. 地球物理学报, 65(1): 256—267

    Yin D. , Dong P. Y. , Shi Y. L. , 2022. Coulomb stress changes induced by small earthquakes in the Zipingpu reservoir area and its significance to the Wenchuan earthquake. Chinese Journal of Geophysics, 65(1): 256—267. (in Chinese)
    尹凤玲, 蒋长胜, 韩立波等, 2018. 红河断裂带库仑应力演化及未来地震危险性估计. 地球物理学报, 61(1): 183—198

    Yin F. L. , Jiang C. S. , Han L. B. , et al. , 2018. Seismic hazard assessment for the Red River fault: insight from Coulomb stress evolution. Chinese Journal of Geophysics, 61(1): 183—198. (in Chinese)
    张迎峰, 张国宏, 单新建等, 2017.2015年尼泊尔Gorkha Mw 7.9地震与Kodari Mw 7.3地震InSAR数据反演及其应力触发分析. 地震地质, 39(1): 104—116

    Zhang Y. F. , Zhang G. H. , Shan X. J. , et al. , 2017. The coseismic source slip and Coulomb stress triggering of 2015 Nepal Gorkha Mw 7.9 and Kodari Mw 7.3 earthquake based on InSAR measurements. Seismology and Geology, 39(1): 104—116. (in Chinese)
    周龙泉, 马宏生, 夏红等, 2008.2007年苏门答腊8.5级、8.3级地震强余震库仑破裂应力触发研究. 地震, 28(1): 40—46

    Zhou L. Q. , Ma H. S. , Xia H. , et al. , 2008. Large aftershocks triggering by coulomb failure stress following the 2007 MS8.5 and 8.3 Sumatra great earthquakes. Earthquake, 28(1): 40—46. (in Chinese)
    周云, 潘正洋, 王卫民等, 2021.1998年以来伽师地震(Mw≥6.0)应力相互作用与强震活动的关系. 地震地质, 43(2): 280—296

    Zhou Y. , Pan Z. Y. , Wang W. M. , et al. , 2021. Relationship between stress interaction and strong earthquake activity of Jiashi earthquakes (Mw≥6.0) since 1998. Seismology and Geology, 43(2): 280—296. (in Chinese)
    Cotton F. , Coutant O. , 1997. Dynamic stress variations due to shear faults in a plane-layered medium. Geophysical Journal International, 128(3): 676—688. doi: 10.1111/j.1365-246X.1997.tb05328.x
    Hardebeck J. L. , Nazareth J. J. , Hauksson E. , 1998. The static stress change triggering model: constraints from two southern California aftershock sequences. Journal of Geophysical Research: Solid Earth, 103(B10): 24427—24437. doi: 10.1029/98JB00573
    Harris R. A. , 1998. Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research: Solid Earth, 103(B10): 24347—24358. doi: 10.1029/98JB01576
    King G. C. P. , Stein R. S. , Lin J. , 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3): 935—953.
    Lin J. , Stein R. S. , 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research: Solid Earth, 109(B2): B02303.
    Nalbant S. S. , Hubert A. , King G. C. P. , 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea. Journal of Geophysical Research: Solid Earth, 103(B10): 24469—24486. doi: 10.1029/98JB01491
    Papadimitriou E. E. , Karakostas V. G. , Papazachos B. C. , 2001. Rupture zones in the area of the 17.08. 99 Izmit (NW Turkey) large earthquake (Mw7.4) and stress changes caused by its generation. Journal of Seismology, 5(2): 269—276. doi: 10.1023/A:1011463420557
    Pauchet H. , Rigo A. , Rivera L. , et al. , 1999. A detailed analysis of the February 1996 aftershock sequence in the eastern Pyrenees, France. Geophysical Journal International, 137(1): 107—127. doi: 10.1046/j.1365-246x.1999.00776.x
    Pinar A. , Honkura Y. , Kuge K. , 2001. Seismic activity triggered by the 1999 Izmit earthquake and its implications for the assessment of future seismic risk. Geophysical Journal International. , 146(1): F1—F7. doi: 10.1046/j.0956-540x.2001.01476.x
    Stein R. S. , Barka A. A. , Dieterich J. H. , 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3): 594—604. doi: 10.1111/j.1365-246X.1997.tb05321.x
    Toda S. , Stein R. S. , Reasenberg P. A. , et al. , 1998. Stress transferred by the 1995 Mw=6.9 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research: Solid Earth, 103(B10): 24543—24565. doi: 10.1029/98JB00765
    Toda S. , Stein R. S. , Richards-Dinger K. , et al. , 2005. Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5): B05 S16.
    Toda S., Lin J., Stein R. S., 2011. Using the 2011 Mw 9.0 off the pacific coast of Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure. Earth, Planets and Space, 63(7): 725—730.
    Toda S., Stein R. S., Özbakir A. D., et al., 2023. Stress change calculations provide clues to aftershocks in 2023 Türkiye earthquakes. (2023-02-08)[2023-07-06]. http://doi.org/10.32858/temblor.295.
    Wan Y. G., Wu Z. L., Zhou G. W., 2004. Focal mechanism dependence of static stress triggering of earthquakes. Tectonophysics, 390(1—4): 235—243.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回