• ISSN 1673-5722
  • CN 11-5429/P

利用谱元法研究震源参数对于近断层地震动上盘效应的影响

万志文 钟菊芳

万志文,钟菊芳,2023. 利用谱元法研究震源参数对于近断层地震动上盘效应的影响. 震灾防御技术,18(3):450−461. doi:10.11899/zzfy20230303. doi: 10.11899/zzfy20230303
引用本文: 万志文,钟菊芳,2023. 利用谱元法研究震源参数对于近断层地震动上盘效应的影响. 震灾防御技术,18(3):450−461. doi:10.11899/zzfy20230303. doi: 10.11899/zzfy20230303
Wan Zhiwen, Zhong Jufang. Influence of Source Parameters on the Hanging Wall Effect of Near-fault Earthquake Motion by Spectral Element Method[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 450-461. doi: 10.11899/zzfy20230303
Citation: Wan Zhiwen, Zhong Jufang. Influence of Source Parameters on the Hanging Wall Effect of Near-fault Earthquake Motion by Spectral Element Method[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 450-461. doi: 10.11899/zzfy20230303

利用谱元法研究震源参数对于近断层地震动上盘效应的影响

doi: 10.11899/zzfy20230303
基金项目: 国家自然科学基金项目(51969019、51468045); 2022年度水利部重大科技项目(SKS-2022100);中国水利水电科学研究院基本科研业务费专项项目(EB110145 B0012021);南昌航空大学研究生创新专项资金立项项目(YC2021-112)
详细信息
    作者简介:

    万志文,男,生于1998年。硕士研究生。主要从事近断层地震动数值模拟研究。E-mail:wanzw805@163.com

    通讯作者:

    钟菊芳,女,生于1972年。博士后,教授,硕士生导师。主要从事地震动输入机制研究。E-mail: zhjf_814@163.com

  • 12 https://coreform.com/

Influence of Source Parameters on the Hanging Wall Effect of Near-fault Earthquake Motion by Spectral Element Method

  • 摘要: 国内外已有诸多学者基于强震记录或数值模拟方法开展了近断层地震动的上盘效应分析,并获得了初步的认识,但上盘效应随震源参数的变化规律仍有待深入探讨。本文使用运动学有限断层震源模型,运用高精度谱元法模拟逆断层破裂模式下近断层区域地震动,对比上、下盘地震动差异进而分析近断层地震动上盘效应。通过改变单一震源参数,研究断层上界埋深、震级大小以及断层倾角对地震动上盘效应的影响规律。研究结果表明:(1)使用运动学有限断层震源的谱元法数值模拟可以较好地反映近断层上盘效应;(2)上盘效应随测点到断层上界在地表投影的水平距离Rx的增加先增大后减小,最终趋于稳定。(3)上盘效应随断层上界埋深的增加先增大后减小,且随着断层上界埋深的增加,上盘效应峰值区会向远离断层破裂迹线的方向扩展。(4)上盘效应受矩震级影响较小,但总体随矩震级的增大而增大;上盘效应峰值区到断层破裂迹线的距离不随矩震级的变化而变化。(5)随着断层倾角的增加,上盘效应先增大后减小,当断层倾角为45°时上盘效应最为明显;随着断层倾角增加,上盘效应峰值区会向远离断层破裂迹线的方向扩展;当断层倾角为90°时不存在上盘效应。
    1)  12 https://coreform.com/
  • 图  1  上盘效应示意图

    Figure  1.  The schematic of hanging wall effect

    图  2  三维场地及断层模型示意图

    Figure  2.  Schematic of three-dimensional site and fault model

    图  3  运动学有限断层震源模型确立流程

    Figure  3.  Establishment process of kinematic finite fault source model

    图  4  震源时间函数及其傅里叶振幅谱

    Figure  4.  Source time function and its Fourier amplitude spectrum

    图  5  水平向PGA空间分布及上盘效应随Rx变化图

    Figure  5.  Spatial distribution of horizontal PGA and variation of hanging wall effect with Rx

    图  6  不同断层上界埋深的有限断层震源模型示意图

    Figure  6.  Schematic of finite fault source model with different buried depths of upper boundary of fault

    图  7  不同断层上界埋深对应的PGA分布云图

    Figure  7.  Spatial distribution of PGA corresponding to different buried depths of upper boundary of fault

    图  8  不同上界埋深的上盘效应随Rx变化的对比图

    Figure  8.  Comparison of hanging wall effect with Rx for different buried depths

    图  9  不同矩震级对应的PGA空间分布云图

    Figure  9.  Spatial distribution of PGA corresponding to different moment magnitudes

    图  10  不同震级对应的上盘效应随Rx变化的对比图

    Figure  10.  Comparison of hanging wall effect with Rx for different moment magnitudes

    图  11  不同断层倾角的有限断层震源模型示意图

    Figure  11.  Schematic of finite fault source model with different fault dip angles

    图  12  不同断层倾角对应的PGA空间分布云图

    Figure  12.  Spatial distribution of PGA corresponding to different fault dip angles

    图  13  不同断层倾角对应的上盘效应随Rx变化的对比图

    Figure  13.  Comparison of hanging wall effect with Rx for different fault dip angles

    表  1  计算模型介质参数

    Table  1.   The medium parameters of calculation model

    深度/
    km
    密度ρ/
    (g·cm−3
    P波速度vp/
    (km·s−1
    S波速度vs/
    (km·s−1
    品质因子
    Qμ
    单元尺寸/
    km
    5 2.67 4.92 2.71 150 0.5
    20 2.86 6.34 2.86 1
    30 2.85 6.80 2.95 2
    下载: 导出CSV
  • 巴振宁, 赵靖轩, 吴孟桃等, 2021. 基于逆断层动力学模型的三维山体地震动谱元法模拟. 地震工程与工程振动, 41(3): 32—42

    Ba Z. N. , Zhao J. X. , Wu M. T. , et al. , 2021. Three-dimensional ground motion spectral element method simulation based on inverse fault dynamics model. Earthquake Engineering and Engineering Dynamics, 41(3): 32—42. (in Chinese)
    巴振宁, 赵靖轩, 梁建文等, 2022. 基于有限断层震源模型的北京地区强地震动模拟——以1679年三河—平谷8级地震为例. 地震研究, 45(3): 479—488

    Ba Z. N. , Zhao J. X. , Liang J. W. , et al. , 2022. Simulation of strong ground motion in Beijing area based on finite fault source model: taking the 1679 Sanhe-Pinggu M8 earthquake as an example. Journal of Seismological Research, 45(3): 479—488. (in Chinese)
    党鹏飞, 刘启方, 王冲等, 2020. 地震动随机有限断层模拟方法综述. 地震工程与工程振动, 40(6): 131—139 doi: 10.13197/j.eeev.2020.06.131.dangpf.013

    Dang P. F. , Liu Q. F. , Wang C. , et al. , 2020. Review on the stochastic finite-fault ground motion simulation method. Earthquake Engineering and Engineering Dynamics, 40(6): 131—139. (in Chinese) doi: 10.13197/j.eeev.2020.06.131.dangpf.013
    胡进军, 2009. 近断层地震动方向性效应及超剪切破裂研究. 哈尔滨: 中国地震局工程力学研究所.

    Hu J. J., 2009. Directivity effect of near-fault ground motion and super-shear rupture. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    黄蓓, 2003. 基于集集地震记录的近断层地震动特性分析. 北京: 中国地震局地球物理研究所.

    Huang B., 2003. Study on near-field characteristics of strong ground motion during the 1999 chi-chi, Taiwan, Earthquake. Beijing: Institute of Geophysics, China Earthquake Administration. (in Chinese)
    李平恩, 廖力, 奉建州, 2021. 汶川地震失稳机制的数值模拟研究. 地球物理学报, 64(10): 3466—3477

    Li P. E. , Liao L. , Feng J. Z. , 2021. Numerical simulation study of instability mechanism of the 2008 Wenchuan earthquake. Chinese Journal of Geophysics, 64(10): 3466—3477. (in Chinese)
    邱卓, 2019. 汶川地震动强度指标特征分析. 南昌: 南昌航空大学.

    Qiu Z., 2019. Characteristic analysis of intensity measure of ground motion in Wenchuan. Nanchang: Nanchang Hangkong University. (in Chinese)
    唐承志, 2016. 近断层上下盘断层参数对不同周期框架结构地震响应的影响规律研究. 广州: 广州大学.

    Tang C. Z., 2016. Study on influences of near-fault hanging wall/foot-wall parameters on seismic response of differents periods framed structures. Guangzhou: Guangzhou University. (in Chinese)
    万天丰, 1985. 关于逆断层、冲断层与逆掩断层的定义. 地质论评, 31(3): 283—284 doi: 10.3321/j.issn:0371-5736.1985.03.014

    Wan T. F. , 1985. Definition of the words "reverse fault", "thrust" and "overthrust". Geological Review, 31(3): 283—284. (in Chinese) doi: 10.3321/j.issn:0371-5736.1985.03.014
    万子轩, 2020. 基于谱元法的山体地形效应模拟研究. 成都: 成都理工大学.

    Wan Z. X., 2020. Investigations of mountain topographic effects based on spectral element method. Chengdu: Chengdu University of Technology. (in Chinese)
    王栋, 谢礼立, 胡进军, 2008. 倾斜断层不对称分布引起的几何效应——上下盘效应. 地震学报, 30(3): 271—278

    Wang D. , Xie L. L. , Hu J. J. , 2008. Geometric effects resulting from the asymmetry of dipping fault: hanging wall/footwall effects. Acta Seismologica Sinica, 30(3): 271—278. (in Chinese)
    王栋, 2010. 近断层地震动的上/下盘效应研究. 哈尔滨: 中国地震局工程力学研究所.

    Wang D., 2010. The hanging wall/footwall effects of near-fault ground motions. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    杨泽, 盛俭, 金显廷等, 2020. 精河MS6.6地震近断层地震动模拟. 防灾减灾工程学报, 40(6): 1024—1036, 1052

    Yang Z. , Sheng J. , Jin X. T. , et al. , 2020. Simulation of near-fault ground motion of Jinghe MS6.6 earthquake. Journal of Disaster Prevention and Mitigation Engineering, 40(6): 1024—1036, 1052. (in Chinese)
    赵金鑫, 2013. 汶川地震近断层效应研究. 哈尔滨: 中国地震局工程力学研究所.

    Zhao J. X., 2013. Study on near-fault effects of Wenchuan earthquake. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    Abrahamson N. A. , Somerville P. G. , 1996. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bulletin of the Seismological Society of America, 86(1 B): S93—S99. doi: 10.1785/BSSA08601B0S93
    Chaljub E. , Komatitsch D. , Vilotte J. P. , et al. , 2007. Spectral-element analysis in seismology. Advances in Geophysics, 48: 365—419.
    Graves R. , Pitarka A. , 2015. Refinements to the Graves and Pitarka (2010) broadband ground-motion simulation method. Seismological Research Letters, 86(1): 75—80. doi: 10.1785/0220140101
    Hanks T. C. , Kanamori H. , 1979. A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5): 2348—2350. doi: 10.1029/JB084iB05p02348
    Hu J. J. , Zhang W. B. , Xie L. L. , et al. , 2015. Strong motion characteristics of the Mw 6.6 Lushan earthquake, Sichuan, China — an insight into the spatial difference of a typical thrust fault earthquake. Earthquake Engineering and Engineering Vibration, 14(2): 203—216. doi: 10.1007/s11803-015-0017-2
    Komatitsch D. , Vilotte J. P. , 1998. The spectral element method: an efficient tool to simulate the seismic response of 2 D and 3 D geological structures. Bulletin of the Seismological Society of America, 88(2): 368—392. doi: 10.1785/BSSA0880020368
    Mavroeidis G. P. , Papageorgiou A. S. , 2003. A mathematical representation of near-fault ground motions. Bulletin of the Seismological Society of America, 93(3): 1099—1131. doi: 10.1785/0120020100
    Mavroulis S. , Kranis H. , Lozios S. , et al. , 2022. The impact of the September 27, 2021, Mw= 6.0 Arkalochori (Central Crete, Greece) earthquake on the natural environment and the building stock. In: Proceedings of the 24 th EGU General Assembly. Vienna, Austria: EGU, EGU22-7994.
    Somerville P. , Irikura K. , Graves R. , et al. , 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70(1): 59—80. doi: 10.1785/gssrl.70.1.59
    Somerville P. G., Graves R. W., 2003. Characterization of earthquake strong ground motion. Pure and Applied Geophysics, 160(10—11): 1811—1828.
    Wells D. L. , Coppersmith K. J. , 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4): 974—1002.
    Wen R. Z. , Ren Y. F. , 2014. Strong‐motion observations of the Lushan Earthquake on 20 April 2013. Seismological Research Letters, 85(5): 1043—1055. doi: 10.1785/0220140006
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  15
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-04
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回