• ISSN 1673-5722
  • CN 11-5429/P

2022年9月5日四川泸定MS6.8地震近断层地震动特征

谢俊举 吕承浩 李志恒 吴凡 李小军 温增平

谢俊举, 任叶飞. 专题简介[J]. 震灾防御技术, 2023, 18(3): 1-2.
引用本文: 谢俊举,吕承浩,李志恒,吴凡,李小军,温增平,2023. 2022年9月5日四川泸定MS6.8地震近断层地震动特征. 震灾防御技术,18(3):419−431. doi:10.11899/zzfy20230301. doi: 10.11899/zzfy20230301
Xie Junju, Lv Chenghao, Li Zhiheng, Wu Fan, Li Xiaojun, Wen Zengping. Characteristics of Near-source Strong Ground Motion Observed from the September 5, 2022 Luding MS6.8 Earthquake[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 419-431. doi: 10.11899/zzfy20230301
Citation: Xie Junju, Lv Chenghao, Li Zhiheng, Wu Fan, Li Xiaojun, Wen Zengping. Characteristics of Near-source Strong Ground Motion Observed from the September 5, 2022 Luding MS6.8 Earthquake[J]. Technology for Earthquake Disaster Prevention, 2023, 18(3): 419-431. doi: 10.11899/zzfy20230301

2022年9月5日四川泸定MS6.8地震近断层地震动特征

doi: 10.11899/zzfy20230301
基金项目: 国家重点研发计划课题 (2022YFC3003503);中国地震局地球物理研究所基本科研业务专项(DQJB20B23)
详细信息
    作者简介:

    谢俊举,男,生于1985年。研究员。主要从事强震地面运动、场地反应和地震动模拟研究。E-mail:xiejunjv05@mails.ucas.ac.cn

  • 12 https://www.cea.gov.cn
  • 23 https://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml

Characteristics of Near-source Strong Ground Motion Observed from the September 5, 2022 Luding MS6.8 Earthquake

  • 摘要: 2022年9月5日12时52分四川甘孜州泸定县发生MS6.8地震,造成重大人员伤亡和财产损失。本文利用此次地震中距离发震断层80 km以内获得的92个三分量加速度记录,研究此次地震近断层地震动峰值加速度(PGA)、峰值速度(PGV)和不同周期加速度反应谱(Sa)的空间分布与衰减特征,探讨了近断层地震动的脉冲特征及其对地震动反应谱的影响。研究结果表明:(1)此次地震近断层地震动表现出随观测方向变化的较强极性特征,其中51LDJ记录的南北分量约达到东西分量的3倍,这主要受地震的走滑破裂特征影响。(2)近场地震动强度的空间分布主要受此次地震发震断层的走向控制,峰值加速度、速度和加速度反应谱值的分布与断层走向特点一致。较强的观测值多位于烈度VII度以上的区域,与震害分布相符,地震动强度分布从一定程度决定了震害分布。(3)从实际观测结果与地震动经验模型的对比来看,经验模型对本次地震PGA和0.2 s的短周期地震动有较好的预测;对于PGV和周期0.5 s以上的地震动反应谱,本文考察的6个经验模型均有不同程度的高估。(4)本次泸定地震有2条典型脉冲记录,均位于距离发震断层15 km以内,脉冲记录波形具有明显的双向脉冲特征,记录的PGV分别达到56.0 cm/s 和37.0 cm/s。速度脉冲在其脉冲特征周期附近,对加速度反应谱有显著放大作用。受此影响,距离断层最近的T2471台站记录的东西向和南北向反应谱在周期0.6 ~1.5 s范围均显著高于VIII度罕遇地震设计谱。此外,局部地形对地震动短周期成分有重要影响,T2471记录 东西向反应谱在0.1~0.2 s ,也远远超过了VIII度罕遇地震设计谱。
    1)  12 https://www.cea.gov.cn
    2)  23 https://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml
  • 近断层强地面运动特性与断层破裂尺度、断层面位错的发展过程、断层破裂速度、滑动方向以及观测点与断层的相对位置等因素密切相关。受复杂震源破裂过程影响,近断层地震动具有与远场地震动显著不同的特征,比如速度大脉冲、强极性、破裂方向性、滑冲效应和上盘效应等。世界范围内历次破坏性地震的震害经验表明,工程结构地震破坏和人员伤亡往往集中在靠近震源的近断层区域,这与近断层地震动的特殊性及其破坏作用密切相关。近断层地震动特性及地震动模拟研究,对于揭示近断层地震动形成机理、破坏作用以及工程抗震设防具有重要理论意义和应用价值。

    近年来,近断层地震动已成为地震学和地震工程学研究关注的热点领域。20世纪以来多个7级以上地震发生在城市附近,并对周围城市造成了严重破坏,如1994年Northridge地震、1995年Kobe地震、1999年Chi-Chi地震和Kocaeli地震、2023年Pazarcik地震等,地震造成的工程结构破坏和人员伤亡主要集中于近断层区域。这些地震之所以对周围城市产生如此严重的破坏,主要与近断层区域强烈的地面运动有关。近断层地震动在振幅、频谱和波形等方面与远场地震动都有明显的差别,如往往表现出明显的速度脉冲特征,这种脉冲通常表现为大幅值、长周期的速度运动或永久位移特征,并具有很高的能量,可以使得结构在地震作用下的非弹性形变显著增大,导致结构倒塌风险概率的增加。

    目前在近断层地震动研究方面,主要是利用收集到的强震动观测记录,对比分析近断层地震动在幅值、持时、频谱、速度和位移反应谱、非平稳特性方面与远场地震动的不同,研究近断层的特殊地震动特征与震级、断层类型、距离和场地条件等因素之间的关系;另一方面,基于地震学理论,采用震源动力学或运动方法模拟近断层地震动的产生和传播过程,或者结合数学模型对近断层地震动(如速度大脉冲)进行仿真,应用于工程抗震研究。然而,由于近断层地震动具有非常复杂的形成机理,其受地震震源特性(如断层破裂速度和方向性、几何条件、断层机制等)的影响非常显著,在不同震源机制及地形和场地条件的影响下,近断层地震动会体现显著不同的特点。

    针对近断层地震动对工程结构的破坏作用,国内外已取得许多重要成果,但大都没有考虑速度脉冲的不同形成机制(如断层的破裂方向性和滑冲效应等)对其脉冲特性的影响。尽管由破裂方向性效应引起的速度大脉冲很早就已被观测结果证实,但关于它对结构破坏作用的研究却比较晚。直到1994年Nothridge地震之后,人们才开始普遍认识到脉冲对长周期结构的危害性,并且在工程设计中开始考虑这种放大影响。研究人员提出了考虑近断层效应的加速度反应谱修正方法,将近断层地震动的所有周期的幅值或反应谱相对于以往的地震动水平一致地提高。然而,研究发现方向性效应引起的近断层速度大脉冲,并不是对地震动所有频带的成分一致地放大,而是影响特定频段的地震动,这个现象被称为“窄带方向性效应”。此外,近断层地震动有较强的极性特征,即同一场点的地震动随观测方向会发生显著变化,这对地震动的速度脉冲特性会产生影响,而目前在这方面的研究还处于初步阶段。

    本期专题收录了针对近断层地震动特性及模拟相关热点问题研究的5篇文章。谢俊举等利用强震动观测台站以及国家地震烈度速报和预警工程台站记录研究了2022年泸定6.8级地震近断层地震动空间分布、衰减和速度脉冲特征,揭示了此次地震中近断层地震动随观测方向变化的显著差异及速度脉冲对反应谱的窄带放大作用,研究表明此次地震近断层地震动空间分布和极性特征受地震走滑破裂特征所控制。赵晓芬等利用日本北海道胆振东部 6.6级地震中K-NET和KiK-net强震动台网获取的近场强震动加速度记录,研究了上盘效应对此次近断层地震动空间分布和衰减的影响,基于残差分析定量评估了断层上盘和下盘的地震动峰值和不同周期地震动反应谱的差异,并与NGA-West2地震动经验预测模型对比,揭示高倾角的北海道地震的地震动上盘效应特征,研究发现此次地震上盘效应主要影响断层距离小于45 km的范围,且主要影响PGA和短周期(T≤1.0 s)地震动。万志文等基于运动学有限断层震源模型,采用高精度谱元法模拟逆断层地震事件的近断层地震动,研究了上盘效应影响下断层上、下盘地震动的差异,揭示断层几何尺寸、上界埋深及断层倾角对地震动上盘效应的影响规律;研究发现上盘效应随断层上界埋深的增加先增大后减小,且随着断层上界埋深的增加,上盘效应峰值区会向远离断层破裂迹线的方向扩展;随着断层倾角的增加,上盘效应先增大后减小,当断层倾角为45°时上盘效应最为明显。张海等利用区域地表高程、速度介质参数以及地震断层滑移分布数据,采用谱元法精细化模拟了青海门源MS6.9地震的地震波传播过程,并与实测强震动观测结果进行对比,揭示了地震断层对近断层地震动分布和方向性效应的影响;受复杂山体起伏和强地面运动方向性效应的影响,地震波在断层两侧出现反应较为剧烈的波前,山体的密集分布对PGV和地震动持续时间有显著影响,而平坦区域的地震响应相对较弱。张钦等利用实测强震动记录研究了近断层地震动的脉冲特征、高低频分量模型参数、频谱特征,给出了高频分量模型参数建议值和低频分量模型参数的概率分布;基于谱表示-随机函数提出了一种考虑脉冲参数随机性的近断层脉冲型地震动的降维建模方法,通过与实测记录对比,验证了近断层脉冲型地震动降维方法的工程适用性;该方法可以较好地模拟向前方向性效应和速度大脉冲特征,提高模拟精度,为近断层区域结构随机地震动反应分析和抗震研究提供可靠的地震动输入。

  • 图  1  强震动加速度记录台站分布

    Figure  1.  Distribution of strong motion stations during the Luding MS6.8 earthquake used in this study

    图  2  选取的典型烈度台记录时程的噪音水平和傅里叶谱频带分析

    Figure  2.  Noise level and Fourier spectra analysis of three-component time histories of typical MEMS intensity recordings

    图  3  近断层台站记录的三分量加速度及速度时程

    Figure  3.  Three-component acceleration and velocity time histories of typical near-fault recordings

    图  4  泸定MS6.8地震近场强地震动水平峰值加速度(PGA)和峰值速度(PGV)的空间分布

    注:黑色虚线为根据应急管理部(2022)公布的烈度图绘制的此次地震烈度分布3,由内向外分别表示烈度强度IX、VIII、VII和VI。PGA和PGV观测值用不同颜色标尺表示。

    Figure  4.  Spatial distribution of observed PGA and PGV for horizontal strong motion during the Luding MS6.8 earthquake

    图  5  不同周期水平地震动加速度反应谱值(Sa)的空间分布

    注:黑色虚线为根据应急管理部(2022)公布的烈度图绘制的此次地震烈度分布3,由内向外分别表示烈度强度IX、VIII、VII和VI.强震动台站用三角符号表示,加速度反应谱值用不同颜色标尺表示。

    Figure  5.  Spatial distribution of observed spectral accelerations at various periods for horizontal strong motion

    图  6  近场强地震动PGA、PGV和不同周期5%阻尼比加速度反应谱Sa随断层距分布以及与国内外衰减模型的对比

    注:图中断层距离小于 1 km的数据点取为1 km。

    Figure  6.  Variation of observed PGA, PGV and 5% damping spectral accelerations with fault distance and comparison with ground motion models

    图  7  典型速度脉冲记录波形特征

    Figure  7.  Velocity wave forms of two typical pulse-like recordings during the Luding MS6.8 earthquake

    图  8  典型脉冲记录加速度反应谱特征

    Figure  8.  Acceleration response spectra of two typical pulse-like recordings

    图  9  脉冲记录的5%阻尼比加速度反应谱与地震设计谱

    Figure  9.  Comparison of 5% damping acceleration spectra of two pulse-like recordings with the seismic design spectra

    表  1  强震动记录基本信息及地震动参数

    Table  1.   Basic information and ground motion parameters for strong motion records observed within 30 km from the causative fault

    台站代码 台站类别 纬度/(°) 经度/(°) 断层距/km VS30/(cm·s−1 场地
    类别
    PGA/(cm·s−2 PGV/(cm·s−1
    EW NS NS/EW UD EW NS NS/EW UD
    V2411 烈度台 29.6 102.1 0.7 907 I1 351.2 639.3 1.8 561.3 24.3 35.8 1.5 17.7
    V2271 烈度台 29.5 102.2 5.9 912 I1 348.9 520.1 1.5 479.3 53.3 132.6 2.5 62.0
    T2471 烈度台 29.4 102.2 7.4 829 I1 633.9 482.6 0.8 255.5 49.7 31.8 0.6 17.8
    V2201 烈度台 29.6 102.2 8.2 889 I1 279.6 396.8 1.4 179.7 22.7 41.7 1.8 14.1
    51LDJ “十五”强震台 29.7 102.2 12.6 306 II 110.1 306.0 2.8 161.2 12.5 40.8 3.3 7.7
    TS003 实时强震台 29.3 102.3 16.5 893 I1 183.3 191.9 1.0 170.9 10.7 13.3 1.2 9.0
    51SMX “十五”强震台 29.3 102.3 16.9 314 II 185.2 178.4 1.0 167.5 13.0 10.4 0.8 8.5
    T2405 烈度台 29.3 102.3 16.9 913 I1 177.7 184.7 1.0 169.8 10.6 12.9 1.2 8.9
    V2203 烈度台 29.8 102.2 17.1 900 I1 190.2 124.6 0.7 101.7 21.7 17.2 0.8 8.0
    51LDL “十五”强震台 29.8 102.2 17.3 312 II 303.8 199.3 0.7 207.8 12.3 11.2 0.9 6.5
    VL002 实时强震台 29.8 102.3 18.7 900 I1 388.9 416.3 1.1 170.0 29.1 33.6 1.2 6.5
    T2401 烈度台 29.5 102.3 19.4 568 II 83.3 82.3 1.0 44.8 6.1 4.4 0.7 2.7
    VL001 实时强震台 29.9 102.2 25.1 905 I1 103.4 159.0 1.5 150.6 5.1 4.2 0.8 3.0
    51LDS “十五”强震台 29.9 102.2 26.1 348 II 62.9 45.0 0.7 90.0 4.0 2.7 0.7 2.2
    T2408 烈度台 29.3 102.4 27.9 900 I1 97.2 108.9 1.1 74.4 8.0 7.1 0.9 3.7
    T2307 烈度台 29.7 102.4 28.7 744 I1 98.8 158.5 1.6 41.8 7.4 9.8 1.3 4.4
    51SMM “十五”强震台 29.3 102.4 29.6 298 II 394.5 316.8 0.8 116.8 13.0 9.0 0.7 4.9
    T2406 烈度台 29.3 102.4 29.6 797 I1 271.5 380.0 1.4 111.0 8.8 12.7 1.4 4.6
    下载: 导出CSV
  • 陈笑宇, 王东升, 付建宇等, 2021. 近断层地震动脉冲特性研究综述. 工程力学, 38(8): 1—14, 54

    Chen X. Y. , Wang D. S. , Fu J. Y. , et al. , 2021. State-of-the-art review on pulse characteristics of near-fault ground motions. Engineering Mechanics, 38(8): 1—14, 54. (in Chinese)
    江鹏, 李萍萍, 李同林等, 2021.2020年10月22日四川北川MS4.7地震强震动特征分析. 地球与行星物理论评, 52(2): 227—233

    Jiang P. , Li P. P. , Li T. L. , et al. , 2021. Strong-motion recordings in MS4.7 Beichuan, Sichuan earthquake on October 22, 2020. Reviews of Geophysics and Planetary Physics, 52(2): 227—233. (in Chinese)
    江鹏, 李萍萍, 李同林等, 2023.2022年9月5日泸定MS6.8地震强震动记录特征分析[J]. 地震研究, 46(4), 593-602

    Jiang P. , Li P. P. , Li T. L. , et al. , 2023. The characteristics of strong motion records of the Luding MS6.8 earthquake on September 5, 2022[J]. Journal of Seismological Research, 46(4). , 593-602 (in Chinese)
    雷建成, 高孟潭, 俞言祥, 2007. 四川及邻区地震动衰减关系. 地震学报, 29(5): 500—511 doi: 10.3321/j.issn:0253-3782.2007.05.007

    Lei J. C. , Gao M. T. , Yu Y. X. , 2007. Seismic Motion Attenuation Relations in Sichuan and adjacent areas. Acta Seismologica Sinica, 29(5): 500—511. (in Chinese) doi: 10.3321/j.issn:0253-3782.2007.05.007
    李大虎, 丁志峰, 吴萍萍等, 2015. 鲜水河断裂带南东段的深部孕震环境与2014年康定MS6.3地震. 地球物理学报, 58(6): 1941—1953 doi: 10.6038/cjg20150610

    Li D. H. , Ding Z. F. , Wu P. P. , et al. , 2015. The deep seismogenic environment of the southeastern section of the Xianshuihe fault zone and the 2014 Kangding MS6.3 earthquake. Chinese Journal of Geophysics, 58(6): 1941—1953. (in Chinese) doi: 10.6038/cjg20150610
    梁明剑, 陈立春, 冉勇康等, 2020. 鲜水河断裂带雅拉河段晚第四纪活动性. 地震地质, 42(2): 513—525

    Liang M. J. , Chen L. C. , Ran Y. K. , et al. , 2020. Late-quaternary activity of the Yalahe fault of the Xianshuihe fault zone, eastern margin of the Tibet plateau. Seismology and Geology, 42(2): 513—525. (in Chinese)
    刘启方, 袁一凡, 金星等, 2006. 近断层地震动的基本特征. 地震工程与工程振动, 26(1): 1—10 doi: 10.13197/j.eeev.2006.01.001

    Liu Q. F. , Yuan Y. F. , Jin X. , et al. , 2006. Basic characteristics of near-fault ground motion. Earthquake Engineering and Engineering Vibration, 26(1): 1—10. (in Chinese) doi: 10.13197/j.eeev.2006.01.001
    刘泽民, 李俊, 苏金蓉等, 2023.2022年四川泸定MS6.8地震余震序列的自动构建与地震活动性分析. 地球物理学报, 66(5): 1976—1990

    Liu Z. M. , Li J. , Su J. R. , et al. , 2023. Auto-building of aftershock sequence and seismicity analysis for the 2022 Luding, Sichuan, MS6.8 earthquake. Chinese Journal of Geophysics, 66(5): 1976—1990. (in Chinese)
    任叶飞, 温瑞智, 周宝峰等, 2014.2013年4月20日四川芦山地震强地面运动三要素特征分析. 地球物理学报, 57(6): 1836—1846

    Ren Y. F. , Wen R. Z. , Zhou B. F. , et al. , 2014. The characteristics of strong ground motion of Lushan Earthquake on April 20, 2013. Chinese Journal of Geophysics, 57(6): 1836—1846. (in Chinese)
    王国权, 周锡元, 2004.921台湾集集地震近断层强震记录的基线校正. 地震地质, 26(1): 1—14

    Wang G. Q. , Zhou X. Y. , 2004. Baseline correction of near fault ground motion recordings of the 1999 Chi-Chi, Taiwan earthquake. Seismology and Geology, 26(1): 1—14. (in Chinese)
    王文才, 尹志文, 苏小芸等, 2020.2018年陕西宁强5.3级地震强地面运动特征及局部场地效应分析. 地震工程学报, 42(6): 1700—1705 doi: 10.3969/j.issn.1000-0844.2020.06.1700

    Wang W. C. , Yin Z. W. , Su X. Y. , et al. , 2020. Characteristics of strong ground motion of the 2018 Ningqiang M5.3 earthquake in Shaanxi Province and local site response analysis. China Earthquake Engineering Journal, 42(6): 1700—1705. (in Chinese) doi: 10.3969/j.issn.1000-0844.2020.06.1700
    温瑞智, 任叶飞, 黄旭涛等, 2013. 芦山7.0级地震强震动记录及其震害相关性. 地震工程与工程振动, 33(4): 1—14 doi: 10.13197/j.eeev.2013.04.3.wenrzh.002

    Wen R. Z. , Ren Y. F. , Huang X. T. , et al. , 2013. Strong motion records and their engineering damage implications for Lushan Earthquake on April 20, 2013. Earthquake Engineering and Engineering Dynamics, 33(4): 1—14. (in Chinese) doi: 10.13197/j.eeev.2013.04.3.wenrzh.002
    谢俊举, 温增平, 高孟潭等, 2010.2008年汶川地震近断层竖向与水平向地震动特征. 地球物理学报, 53(8): 1796—1805 doi: 10.3969/j.issn.0001-5733.2010.08.005

    Xie J. J. , Wen Z. P. , Gao M. T. , et al. , 2010. Characteristics of near-fault vertical and horizontal ground motion from the 2008 Wenchuan earthquake. Chinese Journal of Geophysics, 53(8): 1796—1805. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.08.005
    谢俊举, 温增平, 李小军等, 2012. 基于小波方法分析汶川地震近断层地震动的速度脉冲特性. 地球物理学报, 55(6): 1963—1972 doi: 10.6038/j.issn.0001-5733.2012.06.017

    Xie J. J. , Wen Z. P. , Li X. J. , et al. , 2012. Analysis of velocity pulses for near-fault strong motions from the Wenchuan earthquake based on wavelet method. Chinese Journal of Geophysics, 55(6): 1963—1972. (in Chinese) doi: 10.6038/j.issn.0001-5733.2012.06.017
    谢俊举, 温增平, 高孟潭, 2013. 利用强震数据获取汶川地震近断层地面永久位移. 地震学报, 35(3): 369—379 doi: 10.3969/j.issn.0253-3782.2013.03.008

    Xie J. J. , Wen Z. P. , Gao M. T. , 2013. Recovery of co-seismic deformation from strong motion records during the Wenchuan earthquake. Acta Seismologica Sinica, 35(3): 369—379. (in Chinese) doi: 10.3969/j.issn.0253-3782.2013.03.008
    谢俊举, 李小军, 温增平, 2017. 近断层速度大脉冲对反应谱的放大作用. 工程力学, 34(8): 194—211

    Xie J. J. , Li X. J. , Wen Z. P. , 2017. The amplification effects of near-fault distinct velocity pulses on response spectra. Engineering Mechanics, 34(8): 194—211. (in Chinese)
    谢俊举, 李小军, 温增平等, 2018. 芦山7.0级地震近断层地震动的方向性. 地球物理学报, 61(4): 1266—1280 doi: 10.6038/cjg2018K0686

    Xie J. J. , Li X. J. , Wen Z. P. , et al. , 2018. Variations of near-fault strong ground motion with directions during the 2013 Lushan MS7.0 earthquake. Chinese Journal of Geophysics, 61(4): 1266—1280. (in Chinese) doi: 10.6038/cjg2018K0686
    俞言祥, 汪素云, 2006. 中国东部和西部地区水平向基岩加速度反应谱衰减关系. 震灾防御技术, 1(3): 206—217 doi: 10.3969/j.issn.1673-5722.2006.03.005

    Yu Y. X. , Wang S. Y. , 2006. Attenuation relations for horizontal peak ground acceleration and response spectrum in eastern and Western China. Technology for Earthquake Disaster Prevention, 1(3): 206—217. (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.03.005
    张喆, 房立华, 许力生, 2023.2022年四川泸定MS6.8地震震源基本特征. 地球物理学报, 66(4): 1397—1408 doi: 10.6038/cjg2022Q0757

    Zhang Z. , Fang L. H. , Xu L. S. , 2023. Primary source characteristics of the 2022 Sichuan Luding MS6.8 Earthquake. Chinese Journal of Geophysics, 66(4): 1397—1408. (in Chinese) doi: 10.6038/cjg2022Q0757
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范(2016年版). 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    Abrahamson N. A. , Silva W. J. , Kamai R. , 2014. Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3): 1025—1055. doi: 10.1193/070913EQS198M
    Baker J. W. , 2007. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5): 1486—1501. doi: 10.1785/0120060255
    Boore D. M. , 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91(5): 1199—1211.
    Boore D. M. , 2006. Orientation-independent measures of ground motion. Bulletin of the Seismological Society of America, 96(4 A): 1502—1511. doi: 10.1785/0120050209
    Boore D. M. , Stewart J. P. , Seyhan E. , et al. , 2014. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3): 1057—1085. doi: 10.1193/070113EQS184M
    Campbell K. W. , Bozorgnia Y. , 2014. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3): 1087—1115. doi: 10.1193/062913EQS175M
    Chiou B. S. J. , Youngs R. R. , 2014. Update of the chiou and youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3): 1117—1153. doi: 10.1193/072813EQS219M
    Guo R. M. , Li L. N. , Zhang W. T. , et al. , 2023. Kinematic slip evolution during the 2022 MS 6.8 Luding, China, earthquake: compatible with the preseismic locked patch. Geophysical Research Letters, 50(5): e2023 GL103164. doi: 10.1029/2023GL103164
    Iwan W. D. , Moser M. A. , Peng C. Y. , 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph. Bulletin of the Seismological Society of America, 75(5): 1225—1246. doi: 10.1785/BSSA0750051225
    Shahi S. K. , Baker J. W. , 2011. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America, 101(2): 742—755. doi: 10.1785/0120100090
    Wald D. J. , Allen T. I. , 2007. Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97(5): 1379—1395. doi: 10.1785/0120060267
    Xie J. J. , Li X. J. , Wen Z. P. , et al. , 2022. Soil profile database and site classification for national strong-motion stations in western China. Seismological Research Letters, 93(3): 1930—1942. doi: 10.1785/0220210271
    Xie J. J. , Li K. W. , Li X. J. , et al. , 2023. VS30-based relationship for Chinese site classification. Engineering Geology, 324: 107253. doi: 10.1016/j.enggeo.2023.107253
    Zhang L., Zhou Y. J., Zhang X., et al., 2023. 2022 Mw 6.6 Luding, China, earthquake: a strong continental event illuminating the Moxi seismic gap. Seismological Research Letters. doi: 10.1785/0220220383.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  41
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回