• ISSN 1673-5722
  • CN 11-5429/P

河北红山台宽频带地震记录区域叠加研究

纪春玲 张合 董博 马广庆

纪春玲,张合,董博,马广庆,2023. 河北红山台宽频带地震记录区域叠加研究. 震灾防御技术,18(2):380−388. doi:10.11899/zzfy20230219. doi: 10.11899/zzfy20230219
引用本文: 纪春玲,张合,董博,马广庆,2023. 河北红山台宽频带地震记录区域叠加研究. 震灾防御技术,18(2):380−388. doi:10.11899/zzfy20230219. doi: 10.11899/zzfy20230219
Ji Chunling, Zhang He, Dong Bo, Ma Guangqing. Research on Regional Stacking of Broadband Seismic Records at Hongshan Station in Hebei Province[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 380-388. doi: 10.11899/zzfy20230219
Citation: Ji Chunling, Zhang He, Dong Bo, Ma Guangqing. Research on Regional Stacking of Broadband Seismic Records at Hongshan Station in Hebei Province[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 380-388. doi: 10.11899/zzfy20230219

河北红山台宽频带地震记录区域叠加研究

doi: 10.11899/zzfy20230219
基金项目: 河北省重点研发计划项目(21375411D);河北省地震科技星火计划攻关项目(DZ2021121700019)
详细信息
    作者简介:

    纪春玲,女,生于1987年。工程师。现从事地震监测预报工作。E-mail:279694644@qq.com

    通讯作者:

    张合,男,生于1979年。高级工程师。主要从事震害防御,地震应急。E-mail:13673161551@163.com

Research on Regional Stacking of Broadband Seismic Records at Hongshan Station in Hebei Province

  • 摘要: 可靠的震相走时是地震预警技术中精确测定震源位置和发震时刻的基础,本文运用STA/LTA震相识别技术,针对单台(河北红山台)2009—2021年共计12年积累的地震记录进行叠加计算,得到了红山台记录到的区域地震各震相走时曲线。结果显示,震中距0°~50°范围内红山台共成像7种震相的走时曲线,分别为P、S、PP、SS、PcS、ScS以及R面波震相,且随着组合参数变化,叠加成像的震相种类、震中距范围、清晰度均有所不同。此外,通过绘制各震相走时曲线发现,震中距0°~15°范围内,P波、S波及R波走时曲线基本呈线性变化,震中距0°~15°范围内计算得到红山台区域地震P波传播速度为7.5 km/s左右,S波传播速度为4.2 km/s左右,R波传播速度为3.5 km/s左右,介于P波和S波之间存在一个震相的走时痕迹,波速为5.4 km/s左右。本工作对于提升红山台震中距≤1000 km的地震预警定位精度有指导意义。
  • 图  1  区域主要地震空间分布图(2009—2021)

    Figure  1.  Spatial distribution of regional main earthquakes (2009—2021)

    图  2  STA/LTA震相识别技术原理图

    Figure  2.  Schematic diagram of STA / LTA phase identification technology

    图  3  距红山台0°~50°范围内各数据集地震波形数统计

    Figure  3.  Statistics of seismic waveform number of each data set in the range of 0° to 50° from Hongshan station

    图  4  数据处理及计算过程

    Figure  4.  Data processing and calculation process

    图  5  参数组合1叠加计算结果及IASP91模型理论走时曲线

    Figure  5.  Superposition calculation results of parameter combination 1 and theoretical travel time curves of IASP91 model

    图  6  参数组合2叠加计算结果及IASP91模型理论走时曲线

    Figure  6.  Superposition calculation results of parameter combination 2 and theoretical travel time curves of IASP91 model

    图  7  参数组合3叠加计算结果及IASP91模型理论走时曲线

    Figure  7.  Superposition calculation results of parameter combination 3 and theoretical travel time curves of IASP91 model

    图  8  参数组合4叠加计算结果及IASP91模型理论走时曲线

    Figure  8.  Superposition calculation results of parameter combination 4 and theoretical travel time curves of IASP91 model

    图  9  参数组合1叠加计算结果(0°~20°)

    Figure  9.  Superposition calculation results of parameter combination 1(0°~20°)

    图  10  参数组合2叠加计算结果(0°~20°)

    Figure  10.  Superposition calculation results of parameter combination 2(0°~20°)

    图  11  参数组合3叠加计算结果(0°~20°)

    Figure  11.  Superposition calculation results of parameter combination 3(0°~20°)

    图  12  参数组合4叠加计算结果(0°~20°)

    Figure  12.  Superposition calculation results of parameter combination 4(0°~20°)

    表  1  数据处理参数组合

    Table  1.   Data processing parameter combination

    组合序号滤波STA/sLTA/s
    1高通0.5 Hz1.09
    2高通0.167 Hz2.020
    3低通0.1 Hz3.030
    4低通0.033 Hz4.545
    下载: 导出CSV
  • 冯太林, 张学工, 李衍达等, 2001. 折射波地震记录叠加成像方法研究. 地球物理学报, 44(1): 129—134

    Feng T. L. , Zhang X. G. , Li Y. D. , et al. , 2001. Research on methodology of stack imaging of refractive seismic recording. Chinese Journal of Geophysics, 44(1): 129—134. (in Chinese)
    蒋振武, 吴律, 1995. 井间地震反射波叠加成像的DLCDP法. 石油地球物理勘探, 30(4): 495—504

    Jiang Z. W. , Wu L. , 1995. DLCDP method for the stacking and imaging of crossborehole seismic reflection waves. Oil Geophysical Prospecting, 30(4): 495—504. (in Chinese)
    李启成, 何书耕, 2019. 用振幅变化长短时均值比实现地震预警中P波自动拾取. 地震工程学报, 41(1): 138—146

    Li Q. C. , He S. G. , 2019. Automatic picking up of P-wave first arrival in earthquake early warning using STA/LTA method. China Earthquake Engineering Journal, 41(1): 138—146. (in Chinese)
    李希元, 胡望水, 张楠等, 2020. 连续子波反射叠加合成地震记录方法. 大庆石油地质与开发, 39(2): 133—138

    Li X. Y. , Hu W. S. , Zhang N. , et al. , 2020. Synthetic seismic recording method by the continuous wavelet-reflection superposition. Petroleum Geology & Oilfield Development in Daqing, 39(2): 133—138. (in Chinese)
    刘晓明, 赵君杰, 王运敏等, 2017. 基于改进的STA/LTA方法的微地震P波自动拾取技术. 东北大学学报(自然科学版), 38(5): 740—745

    Liu X. M. , Zhao J. J. , Wang Y. M. , et al. , 2017. Automatic picking of microseismic events P-wave arrivals based on improved method of STA/LTA. Journal of Northeastern University (Natural Science), 38(5): 740—745. (in Chinese)
    芦俊, 王赟, 季玉新等, 2018. 多分量地震数据的成像技术. 地球物理学报, 61(8): 3499—3514

    Lu J. , Wang Y. , Ji Y. X. , et al. , 2018. Imaging techniques of multi-component seismic data. Chinese Journal of Geophysics, 61(8): 3499—3514. (in Chinese)
    乔红丽, 张常在, 2018. 云计算环境下震前震源异常次声波自动识别方法. 地震工程学报, 40(6): 1331—1336

    Qiao H. L. , Zhang C. Z. , 2018. Automatic identification of anomalous infrasonic waves prior to earthquake in cloud computing environment. China Earthquake Engineering Journal, 40(6): 1331—1336. (in Chinese)
    秦满忠, 沈旭章, 张元生等, 2014. 利用兰州小孔径地震台阵资料叠加观测走时曲线. 地震学报, 36(1): 59—69

    Qin M. Z. , Shen X. Z. , Zhang Y. S. , et al. , 2014. Observed travel-time curves by stacking records from Lanzhou small aperture seismic array. Acta Seismologica Sinica, 36(1): 59—69. (in Chinese)
    孙印, 潘素珍, 刘明军, 2018. 天然地震识别与震相自动拾取技术进展. 中国地震, 34(4): 606—620

    Sun Y. , Pan S. Z. , Liu M. J. , 2018. Seismic phase identification associated with the automatic pickup technology and its application. Earthquake Research in China, 34(4): 606—620. (in Chinese)
    岳玉波, 张建磊, 张超阳等, 2020. 基于时变数据映射的地震叠加成像方法. 石油地球物理勘探, 55(2): 331—340

    Yue Y. B. , Zhang J. L. , Zhang C. Y. , et al. , 2020. Seismic data stacking based on time-varying mapping. Oil Geophysical Prospecting, 55(2): 331—340. (in Chinese)
    赵哲, 2018. 基于STA/LTA法的地震波初至时间提取方法. 中国科技信息, (9): 83—84.
    Astiz L. , Earle P. , Shearer P. , 1996. Global stacking of broadband seismograms. Seismological Research Letters, 67(4): 8—18. doi: 10.1785/gssrl.67.4.8
    Earle P. S. , 1999. Polarization of the earth’s teleseismic wavefield. Geophysical Journal International, 139(1): 1—8. doi: 10.1046/j.1365-246X.1999.00908.x
    Okal E. A., Cansi Y., 1998. Detection of PKJKP at intermediate periods by progressive multi-channel correlation. Earth and Planetary Science Letters, 164(1—2): 23—30.
    Shearer P. M. , 1991. Imaging global body wave phases by stacking long-period seismograms. Journal of Geophysical Research: Solid Earth, 96(B12): 20353—20364. doi: 10.1029/91JB00421
    Shearer P. M. , Rychert C. A. , Liu Q. Y. , 2011. On the visibility of the inner-core shear wave phase PKJKP at long periods. Geophysical Journal International, 185(3): 1379—1383. doi: 10.1111/j.1365-246X.2011.05011.x
    Stevenson P. R. , 1976. Microearthquakes at Flathead Lake, Montana: a study using automatic earthquake processing. Bulletin of the Seismological Society of America, 66(1): 61—80. doi: 10.1785/BSSA0660010061
    Walck M. C. , Clayton R. W. , 1984. Analysis of upper mantle structure using wave field continuation of P waves. Bulletin of the Seismological Society of America, 74(5): 1703—1719. doi: 10.1785/BSSA0740051703
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  36
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回