• ISSN 1673-5722
  • CN 11-5429/P

地震作用下碎石桩场地侧向位移规律研究

罗增文 苏卓林 贾科敏 许成顺

罗增文,苏卓林,贾科敏,许成顺,2023. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术,18(2):361−368. doi:10.11899/zzfy20230217. doi: 10.11899/zzfy20230217
引用本文: 罗增文,苏卓林,贾科敏,许成顺,2023. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术,18(2):361−368. doi:10.11899/zzfy20230217. doi: 10.11899/zzfy20230217
Luo Zengwen, Su Zhuolin, Jia Kemin, Xu Chengshun. Study on Lateral Spreading of Gravel Piles Ground under Earthquake[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 361-368. doi: 10.11899/zzfy20230217
Citation: Luo Zengwen, Su Zhuolin, Jia Kemin, Xu Chengshun. Study on Lateral Spreading of Gravel Piles Ground under Earthquake[J]. Technology for Earthquake Disaster Prevention, 2023, 18(2): 361-368. doi: 10.11899/zzfy20230217

地震作用下碎石桩场地侧向位移规律研究

doi: 10.11899/zzfy20230217
基金项目: 国家自然科学基金面上项目(52078016)
详细信息
    作者简介:

    罗增文,男,生于1977年。高级工程师。主要从事建筑结构设计、地基基础设计研究工作。E-mail:4691152@qq.com

Study on Lateral Spreading of Gravel Piles Ground under Earthquake

  • 摘要: 基于OpenSees有限元软件建立液化场地-碎石桩动力相互作用模型和液化自由场地模型,将两类模型的场地孔隙水压力和侧向位移反应进行对比分析,揭示碎石桩加固液化场地机理及规律,并分析场地倾角和碎石桩渗透系数对碎石桩抵抗液化自由场地侧向位移的影响规律。研究结果表明,渗透性较高的碎石桩可加快孔隙水压力的消散,减弱场地液化程度,进而减小场地侧向位移;当场地倾角较大时,随着场地倾角的持续增大,碎石桩抵抗液化自由场地侧向位移的效果逐渐减弱;碎石桩渗透系数较小时,提高碎石桩渗透系数可显著减小液化场地侧向位移,当渗透系数增至一定程度时,碎石桩渗透系数对液化场地侧向位移的影响较小。
  • 图  1  液化场地-桩有限元模型

    Figure  1.  Finite element model of liquefiable site-pile

    图  2  加速度时程曲线

    Figure  2.  Acceleration time history

    图  3  地震波傅里叶谱

    Figure  3.  Fourier spectrum of seismic waves

    图  4  孔隙水压力时程曲线

    Figure  4.  Pore water pressure time history curve

    图  5  孔隙水压力云图

    Figure  5.  Pore water pressure cloud diagram

    图  6  场地侧向位移

    Figure  6.  Site level residual displacement

    图  7  液化场地-碎石桩有限元模型

    Figure  7.  Liquefiable site - finite element model of multi grave pile

    图  8  场地侧向位移随场地倾角变化曲线

    Figure  8.  The curve of lateral displacement of the site with changes in site inclination angle

    图  9  自由场地与碎石桩场地地表侧向位移比值随场地倾角变化曲线

    Figure  9.  The curve of the ratio of lateral displacement of the free field to that of the gravel pile field with changes in site inclination angle

    图  10  场地侧向位移随碎石桩渗透系数变化曲线

    Figure  10.  The curve of lateral displacement of the site with changes in the permeability coefficient of gravel piles

    图  11  自由场地与碎石桩场地地表侧向位移的比值随碎石桩渗透系数变化曲线

    Figure  11.  The curve of the ratio of lateral displacement of the free field to that of the gravel pile field with changes in the permeability coefficient of gravel piles

    图  12  孔隙水压力云图

    Figure  12.  Pore water pressure cloud diagram

    表  1  模型材料参数

    Table  1.   Model material parameters

    参数松砂密砂碎石桩
    密度/(t·m−31.72.02.14
    参考剪切模量$ \text{/kPa} $60 000110 000128 000
    参考体积模量$ \text{/kPa} $160 000240 000240 000
    摩擦角ɸ/rad31.035.043.3
    八面体峰值应变0.10.10.1
    参考围压/kPa101101101
    压力系数0.50.50.5
    剪胀角ɸPT/rad31.026.036.5
    剪缩参数c10.0870.0280.028
    剪缩参数c30.1800.0050.005
    剪胀参数d1000
    剪胀参数d20.170.170.17
    屈服面数202020
    渗透系数/( m·s−10.000 500.000 010.100 00
    下载: 导出CSV
  • 董金玉, 黄志全, 马述江等, 2013. 基于正交设计和数值分析的夯扩挤密碎石桩加固液化砂土方案优化研究. 岩土工程学报, 35(S2): 968—973

    Dong J. Y. , Huang Z. Q. , Ma S. J. , et al. , 2013. Optimization design of liquefiable sand soil reinforced by compacted gravel pile with orthogonal design method and numerical analysis. Chinese Journal of Geotechnical Engineering, 35(S2): 968—973. (in Chinese)
    弥鸿嘉, 2007. 碎石桩复合地基沉降三维数值分析. 成都: 西南交通大学.

    Mi H. J., 2007. Three dimensioned numerical analysis of settlement of gravel pile composite foundation. Chengdu: Southwest Jiaotong University. (in Chinese)
    牛琪瑛, 史文祥, 闫卫泽等, 2011. 碎石桩加固液化砂土孔隙水压力变化. 土木工程与管理学报, 28(3): 175—177 doi: 10.3969/j.issn.2095-0985.2011.03.040

    Niu Q. Y. , Shi W. X. , Yan W. Z. , et al. , 2011. Pore water pressure changes of liquefiable sand soil reinforced by gravel pile. Journal of Civil Engineering and Management, 28(3): 175—177. (in Chinese) doi: 10.3969/j.issn.2095-0985.2011.03.040
    邱钰, 黄卫, 刘松玉, 2000. 干振碎石桩处理高速公路液化地基效果分析. 公路交通科技, 17(4): 19—21, 28

    Qiu Y. , Huang W. , Liu S. Y. , 2000. Liquefaction potential analysis of dry-vibrated gravel column foundation for expressway. Journal of Highway and Transportation Research and Development, 17(4): 19—21, 28. (in Chinese)
    王豪, 高广运, 王禹, 2016. 地震荷载作用下可液化微倾场地侧向变形研究. 见: 2016年全国工程地质学术年会论文集. 成都: 《工程地质学报》编辑部, 102—109.
    王兰民, 2020. 黄土地层大规模地震液化滑移的机理与风险评估. 岩土工程学报, 42(1): 1—19 doi: 10.11779/CJGE202001001

    Wang L. M. , 2020. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes. Chinese Journal of Geotechnical Engineering, 42(1): 1—19. (in Chinese) doi: 10.11779/CJGE202001001
    徐文栋, 李学丰, 杨文伟, 2022. 碎石桩加固砂土地基数值模拟. 地基处理, 4(4): 316—321

    Xu W. D. , Li X. F. , Yang W. W. , 2022. Numerical simulation of gravel pile reinforcement for sandy soil foundation. Journal of Ground Improvement, 4(4): 316—321. (in Chinese)
    张艳美, 张旭东, 张鸿儒, 2008. 碎石桩复合地基抗液化性能的数值模拟. 工业建筑, 38(2): 59—63 doi: 10.13204/j.gyjz2008.02.018

    Zhang Y. M. , Zhang X. D. , Zhang H. R. , 2008. Numerical simulation of anti-liquefaction characteristic of stone columns composite foundation. Industrial Construction, 38(2): 59—63. (in Chinese) doi: 10.13204/j.gyjz2008.02.018
    周春澍, 2019. 基于OpenSees的碎石桩减轻液化触发微倾场地侧向位移研究. 廊坊: 防灾科技学院.

    Zhou C. S., 2019. Mitigation of liquefaction-induced lateral deformation in a slightly sloping stratum by gravel pile in OpenSees. Langfang: Institute of Disaster Prevention. (in Chinese)
    邹佑学, 张建民, 王睿, 2022. 碎石桩加固可液化场地工程地震响应分析. 地基处理, 4(1): 25—31, 64

    Zou Y. X. , Zhang J. M. , Wang R. , 2022. Seismic response analysis for stone column improved liquefiable ground. Journal of Ground Improvement, 4(1): 25—31, 64. (in Chinese)
    Mazzoni S., Mckenna F., Scott M. H., et al., 2006. Open system for earthquake engineering simulation: user command-language manual. Berkeley: Pacific Earthquake Engineering Research Center.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  30
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回