Numerical Simulation of Dynamic Interaction Analysis of Cap Pile-soil under Earthquake Action
-
摘要: 基于已开展的非液化场地-群桩基础-结构体系动力响应大型振动台模型试验,进行三维全时程动力数值模拟分析。采用修正的Davidenkov模型反映土体在地震反应过程中的模量衰减,通过“捆绑边界”模拟模型箱的层状剪切运动。通过对比试验中土-结构体系加速度响应时程、土体位移和桩基内力等,验证数值模型的有效性。利用已验证的数值模型,开展承台尺寸对桩-土-上部结构动力响应影响研究。结果表明,承台厚度的增大会导致上部结构和桩顶惯性效应减小;地震作用下沿激振方向前桩大于后桩,随着承台厚度的增大,前桩与后桩峰值弯矩差值率为16.1%~32.1%,群桩效应影响增大;随着承台厚度的增大,承台-土动土压力增大了3~6倍,承台与桩基水平荷载分担比增大,桩基弯矩反弯点位置上移了0.50 m;承台-土的相互摩擦作用会降低结构整体动力响应。
-
关键词:
- 非液化场地 /
- 承台-桩-土动力相互作用 /
- 地震响应 /
- 数值模拟 /
- 试验研究
Abstract: Based on the large-scale shaking table test, the dynamic response of a non-liquefied site pile group foundation system is analyzed using three-dimensional full-time dynamic simulation. In order to simulate the scenario, the modified Davidenkov model is used to represent soil modulus attenuation under seismic response analysis. Additionally, the "binding boundary" technique is employed to describe the layered shear movement of the model box. The impact of pile cap size on the dynamic response of the pile-soil-superstructure is investigated. The numerical model is validated by comparing the acceleration response time history, soil displacement, and pile internal force. The findings demonstrate that increased pile cap thickness can decrease inertial effect of superstructure and top pile, the response of front pile is greater than that of back pile with the difference bing 16.1% to 32.1%, and the group pile effect is increased. With increaing the thickness of cap, the soil dynamic pressure increases 3~6 times, and pile cap- pile lateral load shearing ratio increases, and the bending moment reverse bending point of pile body moves upward about 0.5m along the buried depth. The friction interaction between cap and soil can decrease the overal structure response. -
表 1 模型材料参数
Table 1. Physical parameters of model
土层编号
土层厚度/m
密度ρ/(kg·m−3)Davidenkov模型参数 最大剪切模量Gmax/MPa 泊松比ν A B γ0 γult 剪切波速vs/(m·s−1) 1 0.2 1 400 17 0.35 1.02 0.35 0.000 40 0.003 110 2 1.2 1 460 25 0.30 1.10 0.45 0.000 45 0.003 130 3 0.5 1 600 40 0.30 1.10 0.45 0.000 45 0.003 158 表 2 结构模型材料参数
Table 2. Physical parameters of model
材料 弹性模量/GPa 密度ρ 泊松比 阻尼比 峰值抗压强度/MPa 峰值抗拉强度/MPa 混凝土 14 2 400 0.20 0.05 29.6 2.95 钢筋/H型钢 200 7 800 0.18 — 240.0 240.00 表 3 模型结构动力响应对比
Table 3. Comparison of dynamic responses of model structures
动力响应计算值 0.25 m厚承台 0.50 m厚承台 0.75 m厚承台 有摩擦 无摩擦 有摩擦 无摩擦 有摩擦 无摩擦 承台加速度峰值/g 3.50 3.46 2.91 3.06 2.46 2.51 承台位移峰值/mm 16.40 16.61 11.30 12.52 11.26 11.3 上部结构顶部加速度峰值/g 1.64 1.74 1.48 1.67 1.36 1.58 上部结构顶部位移峰值/mm 7.710 7.850 5.690 6.940 3.682 4.470 桩1弯矩峰值/(N·m) 191.30 201.60 198.30 206.80 211.80 213.30 桩1剪力峰值/N 393.30 411.90 582.60 604.70 783.40 788.70 -
陈国兴, 庄海洋, 2005. 基于Davidenkov骨架曲线的土体动力本构关系及其参数研究. 岩土工程学报, 27(8): 860—864 doi: 10.3321/j.issn:1000-4548.2005.08.002Chen G. X. , Zhuang H. Y. , 2005. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve. Chinese Journal of Geotechnical Engineering, 27(8): 860—864. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.08.002 陈跃庆, 吕西林, 李培振等, 2001. 分层土-基础-高层框架结构相互作用体系振动台模型试验研究. 地震工程与工程振动, 21(3): 104—112 doi: 10.3969/j.issn.1000-1301.2001.03.019Chen Y. Q. , Lü X. L. , Li P. Z. , et al. , 2001. Shaking table testing for layered soil-foundation-structure interaction system. Earthquake Engineering and Engineering Vibration, 21(3): 104—112. (in Chinese) doi: 10.3969/j.issn.1000-1301.2001.03.019 邸博, 2017. 考虑有限基础刚度的高层建筑结构性能研究与应用. 哈尔滨: 哈尔滨工业大学.Di B., 2017. Structural performance study and application of high-rise buildings considering foundation stiffness. Harbin: Harbin Institute of Technology. (in Chinese) 范重, 刘涛, 陈巍等, 2017. 基础刚度对高层建筑抗震性能影响研究. 工程力学, 34(7): 203—213 doi: 10.6052/j.issn.1000-4750.2016.08.0650Fan Z. , Liu T. , Chen W. , et al. , 2017. Study on the influence of foundation stiffness on the seismic performance of high-rise buildings. Engineering Mechanics, 34(7): 203—213. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0650 尚守平, 卢华喜, 王海东等, 2006. 大比例模型结构-桩-土动力相互作用试验研究与理论分析. 工程力学, 23(S2): 155—166Shang S. P. , Lu H. X. , Wang H. D. , et al. , 2006. Test investigation and theoretical analysis of large-scale model on dynamic soil-pile-structure interaction. Engineering Mechanics, 23(S2): 155—166. (in Chinese) 唐亮, 凌贤长, 徐鹏举等, 2010. 承台型式对可液化场地桥梁桩-柱墩地震响应影响振动台试验. 地震工程与工程振动, 30(1): 155—160Tang L. , Ling X. Z. , Xu P. J. , et al. , 2010. Effect of cap type on seismic responses of bridge pile-column pier in liquefiable ground by shaking table test. Journal of Earthquake Engineering and Engineering Vibration, 30(1): 155—160. (in Chinese) 肖晓春, 2003. 地震作用下土-桩-结构动力相互作用的数值模拟. 大连: 大连理工大学.Xiao X. C., 2003. Numerical modeling of soil-pile-structure dynamic interaction under seismic excitation. Dalian: Dalian University of Technology. (in Chinese) 许成顺, 豆鹏飞, 杜修力等, 2022. 非液化土-群桩基础-结构体系相互作用动力响应振动台试验研究. 建筑结构学报, 43(5): 185—194, 204 doi: 10.14006/j.jzjgxb.2020.0260Xu C. X. , Dou P. F. , Du X. L. , et al. , 2022. Dynamic interaction and seismic response of non-liquefiable soil-pile group foundation-structure system from shaking table test. Journal of Building Structures, 43(5): 185—194, 204. (in Chinese) doi: 10.14006/j.jzjgxb.2020.0260 赵晓光, 2020. 地震作用下建筑高低承台群桩基础响应规律试验研究. 北京: 中国建筑科学研究院.Zhao X. G., 2020. Experimental research on response law of pile group foundation with high and low cap under earthquake action. Beijing: China Academy of Building Research. (in Chinese) 中华人民共和国交通运输部, 2012. JTS 146—2012 水运工程抗震设计规范. 北京: 人民交通出版社.Ministry of Communications of the People’s Republic of China, 2012. JTS 146—2012 Code for seismic design of water transport engineering. Beijing: China Communications Press. (in Chinese) 中华人民共和国住房和城乡建设部, 2008. JGJ 94—2008 建筑桩基技术规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2008. JGJ 94—2008 Technical code for building pile foundations. Beijing: China Architecture & Building Press. (in Chinese) 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese) 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2012. GB 50191—2012 构筑物抗震设计规范. 北京: 中国计划出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2012. GB 50191—2012 Design code for antiseismic of special structures. Beijing: China Planning Press. (in Chinese) 朱斌, 熊根, 刘晋超等, 2013. 砂土中大直径单桩水平受荷离心模型试验. 岩土工程学报, 35(10): 1807—1815Zhu B. , Xiong G. , Liu J. C. , et al. , 2013. Centrifuge modelling of a large-diameter single pile under lateral loads in sand. Chinese Journal of Geotechnical Engineering, 35(10): 1807—1815. (in Chinese) 朱志辉, 2006. 土-箱基-框架结构动力相互作用的试验研究与理论分析. 长沙: 湖南大学.Zhu Z. H. , 2006. Theoretical analysis and test research on soil-box foundation-structure dynamic interaction system. Changsha: Hunan University. (in Chinese) 庄海洋, 陈国兴, 梁艳仙等, 2007. 土体动非线性黏弹性模型及其ABAQUS软件的实现. 岩土力学, 28(3): 436—442 doi: 10.3969/j.issn.1000-7598.2007.03.002Zhuang H. Y. , Chen G. X. , Liang Y. X. , et al. , 2007. A developed dynamic viscoelastic constitutive relations of soil and implemented by ABAQUS software. Rock and Soil Mechanics, 28(3): 436—442. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.03.002 Chandler A. M. , 1986. Building damage in Mexico City earthquake. Nature, 320(6062): 497—501. doi: 10.1038/320497a0 Deb P. , Pal S. K. , 2019. Numerical analysis of piled raft foundation under combined vertical and lateral loading. Ocean Engineering, 190: 106431. doi: 10.1016/j.oceaneng.2019.106431 Elahi H., Moradi M., Poulos H. G., et al., 2010. Pseudostatic approach for seismic analysis of pile group. Computers and Geotechnics, 37(1—2): 25—39. Flores J. , Novaro O. , Seligman T. H. , 1987. Possible resonance effect in the distribution of earthquake damage in Mexico City. Nature, 326(6115): 783—785. doi: 10.1038/326783a0 Kim B. T. , Yoon G. L. , 2011. Laboratory modeling of laterally loaded pile groups in sand. KSCE Journal of Civil Engineering, 15(1): 65—75. doi: 10.1007/s12205-011-0924-3 Li L. C. , Liu H. , Wu W. B. , et al. , 2021. Investigation on the behavior of hybrid pile foundation and its surrounding soil during cyclic lateral loading. Ocean Engineering, 240: 110006. doi: 10.1016/j.oceaneng.2021.110006 Maheshwari B. K. , Truman K. Z. , El Naggar M. H. , et al. , 2004. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations. Canadian Geotechnical Journal, 41(1): 118—133. doi: 10.1139/t03-073 Niemann C. , O'Loughlin C. , Tian Y. H. , et al. , 2019. Response of pile groups in sand due to lateral cyclic loading. International Journal of Physical Modelling in Geotechnics, 19(6): 318—330. doi: 10.1680/jphmg.18.00027 Talebi A. , Derakhshani A. , 2019. Estimation of P-multipliers for laterally loaded pile groups in clay and sand. Ships and Offshore Structures, 14(3): 229—237. doi: 10.1080/17445302.2018.1495542 Xiang B. S. , Huang B. , Yang Z. Y. , et al. , 2017. Influences of pile group effects on wave forces on an offshore bridge pile-cap foundation. Challenges, 8(2): 30. doi: 10.3390/challe8020030 Xu C. S. , Zhang Z. H. , Li Y. , et al. , 2020. Validation of a numerical model based on dynamic centrifuge tests and studies on the earthquake damage mechanism of underground frame structures. Tunnelling and Underground Space Technology, 104: 103538. doi: 10.1016/j.tust.2020.103538